Ультратонкие слои вольфрама и селена, как показали эксперименты, могут использоваться в качестве гибких полупрозрачных солнечных батарей. Инновационный материал графен состоит всего из одного слоя атомов углерода и обладает весьма специфическими электронными свойствами. Как выясняется, есть и другие материалы, способные открывать новые технологические возможности, если они упорядочены в одном или нескольких атомных слоях. Исследователи из Венского технологического университета впервые преуспели в изготовлении диода из диселенида вольфрама. Эксперименты показали, что этот материал может использоваться для создания ультратонких гибких солнечных батарей или даже гибких дисплеев. Тонкие слои бывают разнымиПо крайней мере, с 2010 года, когда за изобретение графена была вручена Нобелевская премия, «двумерные кристаллы», сделанные из атомов углерода, оцениваются как один из наиболее многообещающих материалов в электронике. В 2013 году исследование графена было выбрано как передовой проект с финансированием в объеме 1 млрд евро. Графен способен выдерживать чрезвычайное механическое напряжение, и он обладает большими оптикоэлектронными свойствами. С помощью графена в качестве датчика света оптические сигналы могут быть преобразованы в электрические импульсы в чрезвычайно коротком временном масштабе. При этом графен не очень хорошо подходит для создания солнечных батарей. «Электронные состояния в графене не очень практичны для создания фотогальваники», сообщил Томас Мюллер. Именно потому ученый с коллегами стали искать подобные материалы, которые также могут быть сформированы тонкими слоями, но при этом обладают лучшими электронными свойствами. Выбор пал на диселенид вольфрама. Он состоит из одного слоя атомов вольфрама, которые соединены атомами селена выше и ниже вольфрамовой плоскости. Материал поглощает свет подобно графену, однако в диселениде вольфрама этот свет может использоваться для генерации электричества. Самые тонкие солнечные батареи в миреСлой диселенида вольфрама настолько тонок, что сквозь него проходит 95% света, но при этом десятая часть оставшихся 5% преобразуется в электричество. Поэтому внутренняя эффективность материала весьма высока. Большая часть падающего света может использоваться, если друг на друга сложены сразу несколько ультратонких слоев, однако временами высокая прозрачность является полезным побочным эффектом. «Таким материалом можно покрывать стеклянные фасады зданий, которые позволяют большей части света проникать в помещение, попутно генерируя электричество», сообщил Томас Мюллер. Современные солнечные батареи изготавливаются из кремния, являются довольно крупными и не гнутся. Для оптикоэлектронного применения используются также органические материалы, однако они слишком быстро приходят в негодность. «Большое преимущество двумерных одноатомных слоев — их кристалличность. Кристаллические структуры стабильны», отметил Томас Мюллер. Результаты эксперимента, проведенного учеными, опубликованы в издании Nature Nanotechnology. Область исследования весьма конкурентоспособна: в том же выпуске издания опубликованы еще две подобных работы со сходными результатами. Исследователи из Массачусетского технологического института и Вашингтонского университета в Сиэтле также выявили значительные преимущества диселенида вольфрама. Кажется, совсем скоро этот материал будет играть важную роль в материаловедении, как в последние годы графен. 10.03.2014 |
Нано
JACS: Открыт новый тип наночастиц гидрида палладия, которые запирают водород | |
Палладий — это редкий металл, ... |
PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене | |
К разгадке, почему электроны могут разделяться... |
FRI: Нанокапсулы с антоцианами делают привычные продукты полезнее | |
В ходе исследования ученые обнаружили, что&nbs... |
Nature Communications: Наночастицы с оснасткой находят белки в плазме крови | |
Новый способ, который поможет находить в ... |
NatElec: Нанотранзисторы преодолеют ограничения кремниевых полупроводников | |
Кремниевые транзисторы, которые используются д... |
Ученые создали устройство для хранения и передачи информации с помощью света | |
Устройство на основе углеродной нанотрубк... |
Созданы частицы с квантовыми точками для многоразового применения в биомедицине | |
Новые светящиеся микрочастицы, состоящие из&nb... |
В России доказали эффективность нанокомпозитов для лечения атеросклероза | |
Модифицированные нанокомпозиты для лечени... |
Science: Открыт новый метод выращивания полезных квантовых точек | |
Квантовые точки, или полупроводниковые на... |
PNAS: Новый метод поможет собирать в 10 раз больше золота из электронных отходов | |
Губку из оксида графена и хитозана д... |
Nature Nanotechnology: Идет создание упрощенной формы жизни | |
Учёные много лет пытаются понять, как&nbs |
LS&A: Разработан метод синтеза наночастиц высокоэнтропийных сплавов | |
Быстрое создание наночастиц высокоэнтропийных ... |
Nano Letters: Тройные стыки — залог сохранения стабильности наноматериалов | |
Как создать материалы, которые будут прочнее и... |
Nature Nanotechnology: Нанодиски для стимуляции мозга заменят инвазивные электроды | |
Новые магнитные нанодиски разработали учёные и... |
NatComm: Создана основа для практического применения наночастиц в военной связи | |
Новую технологию шифрования связи в видим... |
В СПбГУ усовершенствовали полупроводниковые наноструктуры для оптоэлектроники | |
Учёные Санкт-Петербургского государственного у... |
NatComm: Белки-шапероны помогают обычным белкам принять правильную форму | |
Белки играют важную роль в организме, и&n... |
EMBO Reports: Разработан биологический подход для изучения паттернинга тканей | |
Как морфогены в сочетании с клеточно... |
LS&A: Разработан хиральный нанокомпозит для зондирования сероводорода | |
С развитием нанотехнологий создано много искус... |
NatComm: Созданы чувствительные к магнитному полю спиновые кубиты из нанотрубок | |
Нанотрубки из нитрида бора, BNNTs, содерж... |
NatNanotechnol: Силоксановые наночастицы целятся точно в органы при мРНК терапии | |
Инженеры из Пенсильвании открыли новый сп... |
ACS Nano: Открыты светопоглощающие свойства ахиральных материалов | |
Исследователи из Университета Оттавы сдел... |
Nature Communications: Наноструктуры на дне океана намекают на зарождение жизни | |
Исследователи из Центра устойчивого ресур... |
ACS Nano: Искусственный паучий шелк превратят в медицинские материалы | |
Скоро Хэллоуин, пора украшать дома страшными в... |
AFM: Антибактериальные поверхности из графена уничтожат 99,9% патогенов | |
Графен, обладающий сильными бактерицидными сво... |
Российские ученые подтвердили эффективность золотых наночастиц против опухолей | |
Исследование показало, что эффектив... |
Physical Review Letters: Ученые подобрались ближе к искоренению наношума | |
Благодаря наноразмерным устройствам исследоват... |
ACS Nano: Новое открытие улучшит дизайн микроэлектронных устройств | |
Как работает электроника нового поколения и&nb... |
Small: Совершен прорыв в создании пленок с использованием оксида графена | |
Исследовательская группа из Университета ... |
В УГНТУ разработали установку по переработке печной сажи в графен | |
Установку, которая перерабатывает печную сажу&... |