![]() |
Ученые Томского политехнического университета исследовали влияние примеси алюминия на накопление и распределение водорода в магнии — перспективном материале-накопителе для хранения водорода. Для этого впервые были применены первопринципные (то есть опирающиеся на фундаментальные знания) расчеты электронной плотности по отношению к свойствам материала. Предложенный метод позволяет глубже, на атомарном уровне, понять механизмы «поведения» водорода в магнии при растворении в нем алюминия. Полученные данные в перспективе помогут улучшить свойства материалов-накопителей и сделать более эффективной технологию очистки, компримирования и хранения водорода. Исследование проводится при поддержке федеральной программы „Приоритет 2030“. Результаты работы ученых опубликованы в Journal of Alloys and Compounds (Q1; IF:5,905). Разработка эффективных способов очистки, компримирования и хранения водорода — важная задача в области развития и применения технологий водородной энергетики. Для этих целей широко применяются металлические гидриды и интерметаллические соединения. Одним из самых перспективных материалов-накопителей водорода является магний. Применение магния в чистом виде ограничено его низкой устойчивостью к многократным циклам гидрирования/дегидрирования и высокими температурами эксплуатации. Для улучшения эксплуатационных свойств магния используются каталитические добавки, в том числе алюминий. Ученые вуза изучили механизмы накопления и распределения водорода в магнии под влиянием добавок алюминия.
В рамках проекта политехники провели комплекс вычислений, после чего сопоставили расчеты с экспериментальными данными. На основе полученных результатов были установлены характерные особенности поведения водорода в системе магний-алюминий-водород в зависимости от ее состава и структуры. Используя эти данные, ученые описали механизмы сорбции и десорбции водорода, обусловленные наличием промежуточных фаз в процессе фазового перехода от твердого раствора водорода в магнии в гидрид магния.
Полученные результаты помогут усовершенствовать существующие материалы-накопители, а также разработать более эффективные технологии выделения водорода из смесей, его компримирования и хранения при высоких давлениях.
На следующем этапе проекта ученые планируют изучить возможность применения других добавок для улучшения свойств материалов-накопителей на основе металлогидридов. 14.02.2023 |
Энергия
![]() | |
Ученые предложили собирать воду из воздуха с помощью солнечной энергии | |
В настоящее время более 2,2 миллиарда человек ... |
![]() | |
EMD: Ученые изготовили эффективные органические катоды для цинк-ионных батарей | |
Цинк — дешевый, распространенный, э... |
![]() | |
ТПУ: Высокоэнтропийные сплавы позволят создать мембраны для очистки водорода | |
Ученые Томского политеха создали систему матем... |
![]() | |
Nature Physics: Открыта новая система управления хаотическим поведением света | |
Использование света и управление им ... |
![]() | |
Открыт потенциально более дешевый и холодный способ транспортировки водорода | |
В рамках усилий по отказу от ископае... |
![]() | |
Разработан новый метод создания стабильных и эффективных солнечных элементов | |
Солнечные материалы нового поколения дешевле и... |
![]() | |
Acta Astronautica: В открытом космосе можно построить солнечные фермы | |
Согласно результатам нового исследования, пров... |
![]() | |
Новый катализатор может обеспечить жидкое водородное топливо будущего | |
Исследователи из Лундского университета, ... |
![]() | |
Перовскитовые ячейки — новое решение для повышения эффективности солнечных панелей | |
Солнечные элементы на основе перовскита, ... |
![]() | |
Новая анионообменная мембрана станет ключевым компонентом топливных элементов | |
Анионообменные мембранные топливные элементы п... |
![]() | |
Применение шарового размола улучшит характеристики литий-ионных аккумуляторов | |
Более дешевые и эффективные литий-ионные ... |
![]() | |
Кремний может стать альтернативой графитовым анодам в литий-ионных аккумуляторах | |
В новаторском обзоре, опубликованном в жу... |
![]() | |
Joule: Ученые успешно испытали тандем перовскита и кремния в солнечных батареях | |
Несмотря на то, что традиционные сол... |
![]() | |
Ученые разработали электролизное устройство для превращения CO2 в пропан | |
В недавно опубликованной в журнале Nature... |
![]() | |
E&ES: Новый электролит предотвращает возгорание и тепловой выброс в аккумуляторах | |
Йонг-Джин Ким и Джайеон Бэк из&... |
![]() | |
Исследователи разработали метод охлаждения водородной плазмы в термоядерных реакторах | |
Возможно, люди никогда не смогут приручит... |
![]() | |
Ученые нашли способ очистки воды с помощью солнечной энергии | |
Использование электрохимии для разделения... |
![]() | |
Батареи на основе алюминия могут стать прорывом в развитии электромобилей | |
Хорошая батарея должна обладать двумя качества... |
![]() | |
Появилась теоретическая возможность отказа от лития в пользу натрия в батареях | |
Литий становится новым золотом: стремительное ... |
![]() | |
Американские ученые снова пообещали изготовить солнечные батареи нового поколения | |
Перовскиты, семейство материалов с уникал... |
![]() | |
Алюминий улучшает материалы-накопители на основе магния для хранения водорода | |
Ученые Томского политехнического университета ... |
![]() | |
В России исследуют влияние формы древесины на процесс горения | |
Исследование ученых ТПУ позволит улучшить... |
![]() | |
Никель поможет отказаться от токсичного кобальта в батарейках | |
Поскольку литий-ионные батареи используются бу... |
![]() | |
Перовскит обрел свое место под солнцем | |
Перовскитные солнечные элементы привлекают бол... |
![]() | |
Сходили по-маленькому: ученые разработали батарейки для микроустройств | |
Попытки изготовить микробатарейки с харак... |
![]() | |
В заброшенных шахтах нашли энергию на триллионы долларов | |
Новая технология под названием Подземное ... |
![]() | |
Температурные колебания преобразовали в чистую энергию с помощью наночастиц | |
Пироэлектрический катализ или пирокатализ... |
![]() | |
Чистого с листа. Учёные представили технологию производства чистого топлива из искусственных листьев | |
Фотосинтез назвали фотосинтезом в 1877 го... |
![]() | |
На черном свет клином не сошелся | |
Удел солнечных панелей — лежать на&... |
![]() | |
В Якутии нашли потенциальную основу сверхъемких аккумуляторов | |
Группа ученых из Кольского научного центр... |