PRX Energy: Открыты перспективные материалы для термоядерных реакторов

Ядерный синтез может стать идеальным решением энергетической проблемы человечества, так как он предполагает практически безграничный источник энергии без выбросов парниковых газов.

Но прежде чем приступить к его реализации, необходимо преодолеть огромные технологические трудности. Некоторые из них связаны с материалами.

Для термоядерных реакторов требуются материалы, которые могут выдерживать экстремальные условия на границе с плазмой.

В конструкции экспериментального европейского реактора ITER, который строится во Франции, есть компонент под названием дивертор. Он отбирает тепло и золу, образующиеся в результате термоядерной реакции, и направляет их на определенные поверхности для охлаждения.

Материалы дивертора, обращенные к плазме, выдерживают высокие температуры и постоянно подвергаются бомбардировке нейтронами, электронами, заряженными ионами и высокоэнергетическим излучением.

В проекте ИТЭР дивертор сделан из вольфрама, металла с высокой термостойкостью. Но рассматривались и другие варианты — углеродные волокна или керамические материалы. До сих пор нет уверенности, что вольфрам — лучший выбор для будущих реакторов.

Теория и вычислительные методы могут помочь найти оптимальный материал для дивертора и сделать термоядерный синтез реальностью. Ученые из лаборатории MARVEL в EPFL предложили метод масштабного скрининга потенциальных материалов и список наиболее перспективных из них.

Чтобы реалистично смоделировать динамику на границе плазма-материал, потребовалось бы просчитать поведение тысяч атомов в течение нескольких миллисекунд. При нынешних вычислительных мощностях это невозможно, — говорит Андреа Федригуччи, аспирант и первый автор статьи.

Поэтому ученые решили выбрать несколько ключевых свойств материала, обращенного к плазме, которые позволят оценить его эффективность в диверторе.

Сначала исследователи обратились к базе данных неорганических кристаллических структур Полинга и создали рабочий процесс для поиска тех из них, что обладают достаточной устойчивостью к температурам реактора. Это можно определить по их теплоемкости, теплопроводности, температуре плавления и плотности.

Поскольку температура поверхности слоя материала зависит от его толщины, команда также вычислила максимальную толщину, при которой материалы не расплавятся. Материалы были проранжированы в соответствии с этой характеристикой. Если максимальную толщину рассчитать не удалось, использовался метод оптимизации по Парето для ранжирования материалов по упомянутым свойствам.

В результате был составлен первый шорт-лист из 71 кандидата. На этом этапе пришлось использовать старинный метод, не связанный с вычислениями.

Я изучил литературу по каждому из материалов, чтобы проверить, не были ли они уже протестированы и отброшены или не было ли у них свойств, которые препятствуют их использованию в термоядерном реакторе. Например, склонность к эрозии или ухудшение тепловых свойств под воздействием плазмы и нейтронной бомбардировки, — заявил Федригуччи.

В результате исследования пришлось отказаться от некоторых инновационных материалов, предложенных для применения в термоядерных реакторах, например, высокоэнтропийных сплавов.

Из 21 материала с помощью DFT-процесса были рассчитаны два ключевых свойства, важных для плазменного синтеза: поверхностная энергия связывания (мера легкости извлечения атома с поверхности) и энергия образования водородного интерстиция (косвенный показатель растворимости трития в кристаллической структуре).

По словам Федригуччи, если материал дивертора чрезмерно эродирует в течение срока службы, атомы рассеиваются в плазме, снижая ее температуру.

Кроме того, химическая реакция материала с тритием может привести к уменьшению количества трития, доступного для термоядерного синтеза, а также к накоплению запасов трития свыше безопасных пределов.

В итоговый рейтинг по ключевым свойствам вошли:

  • вольфрам в металлической (W) и карбидной формах (WC и W2C);
  • алмаз и графит;
  • нитрид бора;
  • молибден, тантал и рений.

Были и сюрпризы — например, особая фаза нитрида тантала или другие керамики на основе бора и азота, которые ранее не испытывались для этого применения.

В будущем группа планирует использовать нейронные сети для более точного моделирования процессов, происходящих с материалами в реакторе, включая взаимодействие с нейтронами.

Результаты опубликованы в издании PRX Energy.

06.11.2024

Подписаться: Telegram | Дзен | Вконтакте


Энергия

Ученые создали генератор энергии для пчел весом 46 мг
Ученые создали генератор энергии для пчел весом 46 мг

Ученые из Пекинского технологического инс...

Как солнечные панели и сельское хозяйство могут работать вместе
Как солнечные панели и сельское хозяйство могут работать вместе

Солнечные панели и сельское хозяйство час...

Энергия звезд может заменить уголь и газ
Энергия звезд может заменить уголь и газ

Карл Тишлер из европейского консорциума п...

Не проливайте даром: ученые нашли применение дождевой воде
Не проливайте даром: ученые нашли применение дождевой воде

Когда два материала соприкасаются, заряже...

Кувырок перед прыжком: почему вода сопротивляется расщеплению
Кувырок перед прыжком: почему вода сопротивляется расщеплению

Ученые нашли причину, почему расщепление воды ...

Метанол на стероидах: ученые нашли способ разогнать реакцию
Метанол на стероидах: ученые нашли способ разогнать реакцию

Замена традиционного ископаемого топлива на&nb...

Термоядерный пылесос: как и зачем ученые следят за отходами плазмы
Термоядерный пылесос: как и зачем ученые следят за отходами плазмы

В МИФИ создали систему, которая будет собирать...

Красный свет науки: как химики создали идеальный люминофор
Красный свет науки: как химики создали идеальный люминофор

Химики из Санкт-Петербургского университе...

Канада ставит на свой уран: как CANDU изменит энергетическую карту мира
Канада ставит на свой уран: как CANDU изменит энергетическую карту мира

Канада продолжает укреплять свои позиции в&nbs...

Грязь в дело: ученые нашли способ использовать нефтешлам
Грязь в дело: ученые нашли способ использовать нефтешлам

Ученые из Томского политехнического униве...

Маленькие, но мощные: как SMR решают большие проблемы энергетики
Маленькие, но мощные: как SMR решают большие проблемы энергетики

Сотрудничество ANItA с Уппсальским универ...

Толстые электроды стали тоньше: прорыв в производстве батарей
Толстые электроды стали тоньше: прорыв в производстве батарей

Корейский институт машиностроения и матер...

Энергетический щит: защищать сеть смогут бытовые устройства
Энергетический щит: защищать сеть смогут бытовые устройства

Инженеры из Массачусетского технологическ...

Энергия из-под земли: новая разработка Томского политеха
Энергия из-под земли: новая разработка Томского политеха

Инженеры из Томского политехнического уни...

Атомный ренессанс: Швеция возвращается к ядерной энергии
Атомный ренессанс: Швеция возвращается к ядерной энергии

Швеция вновь обратила внимание на атомную...

Аммиак без жертв: как японские ученые упростили производство
Аммиак без жертв: как японские ученые упростили производство

Мир стремится к устойчивому развитию, и&n...

Новые технологии, новые партнеры: что задумали в ННГУ
Новые технологии, новые партнеры: что задумали в ННГУ

Нижегородский государственный университет имен...

От лаборатории к реальности: как кристаллы времени заряжают мир
От лаборатории к реальности: как кристаллы времени заряжают мир

Мир хранения энергии меняется благодаря кванто...

Поиск на сайте

ТОП - Новости мира, инновации

Гусеница в плаще из мертвых: как хищник с Гавайев обманывает пауков
Гусеница в плаще из мертвых: как хищник с Гавайев обманывает пауков
Бесконечный силикон: ученые нашли способ перерабатывать его снова и снова
Бесконечный силикон: ученые нашли способ перерабатывать его снова и снова
Не напрягаясь: медленные движения защищают от быстрого забывания
Не напрягаясь: медленные движения защищают от быстрого забывания
Опухоль не спрячется: ИИ находит риск рецидива по серии МРТ
Опухоль не спрячется: ИИ находит риск рецидива по серии МРТ
Тепло в ток: как углеродные нанотрубки научились работать в 2-3 раза лучше
Тепло в ток: как углеродные нанотрубки научились работать в 2-3 раза лучше
Ученые создали генератор энергии для пчел весом 46 мг
Ученые создали генератор энергии для пчел весом 46 мг
Неожиданный маневр: почему мухи включают резервную защиту
Неожиданный маневр: почему мухи включают резервную защиту
Тоньше кожи: пленка в 10 нанометров изменит тепловизоры
Тоньше кожи: пленка в 10 нанометров изменит тепловизоры
Ученые нашли способ предсказывать рецидивы васкулита
Ученые нашли способ предсказывать рецидивы васкулита
Почему легкий стеноз сонной артерии все равно приводит к инсульту
Почему легкий стеноз сонной артерии все равно приводит к инсульту
Орбитрек на стероидах: тренажер станет спасением для тех, кто не может ходить
Орбитрек на стероидах: тренажер станет спасением для тех, кто не может ходить
Социальный провал: как ИИ путает разговор с переходом улицы
Социальный провал: как ИИ путает разговор с переходом улицы
ИИ анализирует цветение злаков без помощи человека
ИИ анализирует цветение злаков без помощи человека
ИИ нашел лекарства от долгого ковида. Теперь их испытают
ИИ нашел лекарства от долгого ковида. Теперь их испытают
ИИ научили сомневаться: как алгоритм SIFT борется с нейросетевым бредом
ИИ научили сомневаться: как алгоритм SIFT борется с нейросетевым бредом

Новости компаний, релизы

На одной волне: университет и госструктура усиливают IT-суверенитет
Крипта для людей: почему сложные сервисы теряют пользователей
«Точки роста» в действии: как школы Симферопольского района перестали быть скучными
Оперировать в VR: студенты придумали симулятор для хирургов
Не успеешь моргнуть — WhisperX уже расшифровал: тест скорости от Ainergy