ACSSCE: Превратить биомассу в полезный ресурс поможет инновационное устройство
Исследователи из Университета Кюсю разработали устройство, сочетающее катализатор и микроволновую проточную реакцию для эффективного преобразования сложных полисахаридов в простые моносахариды.
В устройстве используется непрерывный процесс гидролиза, при котором целлобиоза — дисахарид, состоящий из двух молекул глюкозы, — проходит через катализатор из сульфонированного углерода, который нагревается с помощью микроволн. Последующая химическая реакция расщепляет целлобиозу до глюкозы. Результаты исследования опубликованы в журнале ACS Sustainable Chemistry & Engineering.
Преобразование биомассы в полезные ресурсы является темой научных исследований уже несколько десятилетий. Полисахариды биомассы, длинноцепочечные сложные сахара, которые повсеместно встречаются в природе, считаются одними из наиболее перспективных веществ для эффективной переработки, поскольку их можно превратить в простые сахара, которые, в свою очередь, могут быть использованы в пищевой промышленности, фармацевтике и химическом синтезе.
Гидролиз — одна из наиболее эффективных химических реакций, в ходе которой длинноцепочечные сахара превращаются в простые сахара, обычно с использованием кислот в качестве катализаторов. Многие кислотные катализаторы находятся в газообразной или жидкой форме, однако твердые кислотные катализаторы, которые, как следует из названия, представляют собой кислоты в твердой форме, известны тем, что их можно перерабатывать, и поэтому они стали объектом пристального внимания исследователей.
Однако для эффективной реакции с твердыми кислотными катализаторами требуется высокая температура. Чтобы решить эту проблему, доцент Шунтаро Цубаки с сельскохозяйственного факультета Университета Кюсю и его команда исследовали возможность применения микроволновой проточной реакции для нагрева твердых катализаторов в процессе реакции.
Микроволны формируют локализованное высокотемпературное реакционное поле на твердом катализаторе, что может привести к повышению каталитической активности при сохранении более низкой температуры всей реакционной системы, — объясняет Цубаки.
Кроме того, мы можем обеспечить непрерывный поток субстрата через реакционный сосуд, где микроволны воздействуют на катализатор, что приводит к более высокому выходу желаемого продукта.
В разработанном исследователями устройстве используется твердый кислотный катализатор, состоящий из сульфонированного углерода. Для тестирования системы в качестве модельного сахарного субстрата была использована целлобиоза, дисахарид. В устройстве раствор целлобиозы пропускался через катализатор из сульфонированного углерода, который нагревался до 100-140℃ с помощью микроволн. Затем катализатор расщеплял целлобиозу путем гидролиза и получал моносахарид глюкозу.
Одним из ключевых факторов эффективности системы является возможность разделения электрического и магнитного полей микроволн.
Микроволны создают как электрическое, так и магнитное поле. Электрическое поле вызывает нагрев диполярных материалов, таких как вода. Именно оно нагревает пищу. Магнитное поле, с другой стороны, вызывает нагрев проводящих материалов, таких как металлы и углерод, — говорит Цубаки.
В нашем устройстве мы смогли увеличить каталитическую активность, разделив два поля, затем используя электрическое поле для нагрева жидкого раствора целлобиозы и одновременно используя магнитное поле для нагрева катализатора.
Каталитические реакции с микроволновым ускорением применяются для различных химических реакций, включая органический синтез, переработку пластмасс и преобразование биомассы. Команда надеется, что по мере роста возобновляемых источников энергии химические производства, основанные на использовании электричества, такие как их система, помогут продвинуть промышленность к более экологичному будущему.
Мы ожидаем, что наша система поможет в разработке более устойчивого химического синтеза. Мы также хотели бы изучить возможности использования нашей методики для гидролиза других полисахаридов, а также белков для получения аминокислот и пептидов, — заключает Цубаки.
Ранее ученые рассказали о том, как получили из биомассы пластик.
На иллюстрации: простая схема химического процесса в устройстве, разработанном исследовательской группой. В их системе раствор дисахарида целлобиозы (слева) пропускается через сульфоуглеродный катализатор (в центре) — кислотный катализатор, который помогает расщеплять сахара. Затем катализатор нагревают с помощью микроволн, чтобы повысить его каталитическую активность. В результате целлобиоза эффективно превращается в глюкозу (справа). Источник: Kyushu University/Tsubaki lab