Термоэлектрический материал, который можно использовать в умной одежде, создали корейские ученые. Он сохраняет стабильные показатели тепловой энергии даже в экстремальных условиях и решает проблему баланса между хорошими характеристиками и гибкостью термоэлектрических материалов. Группа ученых из Национального университета Ханбат и Корейского института машиностроения и материалов разработала термоэлектрические волокна из теллурида висмута (Bi2Te3). Они могут собирать энергию для гибких электронных устройств следующего поколения. Термоэлектрические материалы преобразуют тепло в электричество. Сейчас 70% энергии теряется, поэтому ученые исследуют устойчивые энергетические материалы, которые могут собирать энергию отработанного тепла. Большинство источников тепла вокруг нас имеют изогнутую форму: человеческое тело, выхлопные трубы автомобилей и охлаждающие ребра. Неорганические термоэлектрические материалы на основе керамики эффективны, но хрупки и сложны в изготовлении для изогнутых поверхностей. Гибкие термоэлектрические материалы из полимеров можно наносить на поверхности разной формы, но их эффективность ограничена низкой электропроводностью и высоким термическим сопротивлением полимера. Исследовательская группа разработала неорганический термоэлектрический материал, который не является гибким. Чтобы преодолеть это ограничение, ученые скрутили наноленты вместо использования полимерных добавок. Так получился нитевидный термоэлектрический материал. Для его создания команда исследователей использовала метод электронно-лучевого осаждения на основе наномолдов. Это позволило непрерывно осаждать наноленты, которые затем скручивались в нить. В результате получились неорганические термоэлектрические волокна из теллурида висмута. Эти неорганические термоэлектрические волокна прочнее на изгиб, чем существующие материалы. После 1000 испытаний на изгиб и растяжение их электрические свойства не изменились. Одежда с такими волокнами может вырабатывать электричество из температуры тела для работы других устройств. Это доказали, собрав энергию с помощью термоэлектрических волокон в спасательных жилетах. Также можно создать систему сбора энергии, которая будет перерабатывать отработанное тепло на производствах. Профессор Ён Сик Чжон:
Профессор Инкью Парк:
У новой разработки есть потенциал коммерциализации. Работа опубликована в журнале Advanced Materials. 23.10.2024 |
Хайтек
NatComm: Учёные приблизились к созданию биополимеров, реагирующих на воду | |
Новый подход для понимания и предска... |
В Челябинске разрабатывают инновационное оборудование для вибрационных испытаний | |
Специалисты ЮУрГУ совместно с Уральским и... |
В ТПУ создали многоразовые накопители водорода из отечественного сырья | |
Более дешевые металлогидридные накопители водо... |
Новый подход к производству цифрового света решает проблемы 3D-печати | |
Новый метод производства цифрового света для&n... |
AEM: Гибридный полупроводник позволит лучше понять спинтронику | |
Электроны вращаются без электрического за... |
Томские ученые представили цифровое решение для оптимизации НПЗ | |
Новый программный комплекс представили ученые ... |
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью | |
Методику создания синтетических данных для&nbs... |
Численное моделирование повысит эффективность 3D-печати из стали 316LSi | |
Морская нержавейка, или сталь 316LSi, шир... |
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей | |
Новый сплав на основе алюминия создали ис... |
В НГУ разработали первые фильтры для технологии связи 6G | |
Уникальные фильтры для импульсной терагер... |
Nat. Nanotechnol: Разработан самоочищающийся электрод для синтеза пероксидов | |
Пероксиды металлов — MO₂, M=Ca, Sr,... |
В СПбГУ создали новые биоактивные молекулы с помощью золотого катализатора | |
Метод соединения двух простых веществ с п... |
AFM: Разработан материал для поглощения электромагнитных волн широкого спектра | |
Ультратонкий пленочный композитный материал, с... |
PRL: Доказана возможность открытия новых сверхтяжелых элементов | |
Уран — самый тяжелый из извест... |
NE: Новый жидкостный акустический датчик распознаёт голоса в шумной обстановке | |
Инженеры разработали множество сложных датчико... |
Science: Новый метод спектроскопии раскрывает квантовые секреты воды | |
Вода — это жизнь. Но водо... |
В ИРНИТУ создали первую партию инклинометров и объединили их в умную сеть | |
Сотрудники Центра маркшейдерских и геодез... |
Ученые УУНиТ создали первый отечественный станок для сухого электрополирования | |
Ученые Уфимского университета науки и тех... |
Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет | |
Физическая модель, которая описывает взаимодей... |
Новый метод синтеза лекарств открыли российские химики | |
Новый метод синтеза производных пирролизидина ... |
Advanced Materials: Созданы волокна в одежду для питания смартфона от тепла тела | |
Термоэлектрический материал, который можно исп... |
Ultrafast Science: Ученые успешно ускорили идентификацию молекул лазером | |
В 100 раз ускорили измерения спектроскопи... |
В УрФУ разработали технологию 3D-печати из жаропрочных титановых сплавов | |
Технологию создания жаропрочных сплавов на&nbs... |
Ученые ЮУрГУ предложили уникальную технологию повышения надежности сварки | |
Уникальную технологию повышения надежности сва... |
В Томском университете создали интегральные схемы для российских РЛС | |
Первый российский комплект интегральных схем д... |
Российские ученые приблизились к созданию искусственной сетчатки | |
Оптоэлектронный синапс — мемристор ... |
Экологичная замена полиэтиленовым упаковкам разработана в МГУ | |
Биоразлагаемый полимер — полипропил... |
CS: Создана технология производства компонентов для шампуней и лекарств | |
Исследователи из России и Китая разр... |
APN: Фотонные вычисления помогут продвинуться в области аналоговых вычислений | |
Дифференциальные уравнения с частными про... |
Ученые НИТУ МИСИС разработали магнитные микропровода для имплантатов и датчиков | |
Новые ультратонкие аморфные микропровода, кото... |