Physical Review Applied: Ниобий воскресили для квантовых технологий

Когда речь заходит о сверхпроводящих кубитах, ниобий в этой связи если и упоминают, то неотчетливо, поскольку еще недавно он считался недостаточно эффективным материалом. Однако теперь ученые при поддержке Q-NEXT нашли способ создать высокопроизводительный ниобиевый кубит и эффективно использовать его превосходные качества.

Ниобий вновь становится популярным в сфере квантовых технологий.

В течение последних 15 лет ниобий сидел на скамейке запасных, пережив несколько посредственных ударов в качестве основного материала для кубитов.

Кубиты — это фундаментальные компоненты квантовых устройств. Один из типов кубитов использует сверхпроводимость для обработки информации.

Ниобий, о котором говорили как о сверхпроводнике, всегда был многообещающим кандидатом для квантовых технологий. Но ученые обнаружили, что ниобий трудно использовать в качестве основного компонента квита, и поэтому он был отнесен ко второй струне в команде «Сверхпроводящий кубит».

Теперь группа под руководством Дэвида Шустера из Стэнфордского университета продемонстрировала способ создания на основе ниобия кубитов, которые конкурируют с самыми современными для своего класса.

Это был многообещающий первый шаг, воскресивший ниобиевые соединения. … Благодаря широким возможностям работы кубитов на основе ниобия мы открываем целый ряд новых возможностей для будущих квантовых технологий. — Дэвид Шустер, Стэнфордский университет

Мы показали, что ниобий снова актуален, расширяя возможности того, что мы можем делать с кубитами, — говорит Александр Анферов из отделения физических наук Чикагского университета, один из ведущих ученых, получивших результат.

Работа команды опубликована в журнале Physical Review Applied и была частично поддержана Q-NEXT, Национальным исследовательским центром квантовой информации Министерства энергетики США (DOE), возглавляемым Аргоннской национальной лабораторией DOE.

Используя отличительные особенности ниобия, ученые смогут расширить возможности квантовых компьютеров, сетей и сенсоров. Эти квантовые технологии, использующие квантовую физику для обработки информации, превосходят свои традиционные аналоги и, как ожидается, улучшат такие разнообразные области, как медицина, финансы и связь.

Преимущество ниобия

Когда речь заходит о сверхпроводящих кубитах, алюминий занимает главенствующее положение. Сверхпроводящие кубиты на основе алюминия могут хранить информацию в течение относительно долгого времени, прежде чем данные неизбежно распадутся. Более длительное время когерентности означает больше времени для обработки информации.

Самое большое время когерентности для сверхпроводящего кубита на основе алюминия составляет несколько сотен миллионных долей секунды. В отличие от этого, в последние годы лучшие кубиты на основе ниобия имели время когерентности в 100 раз меньшее — несколько сотен миллиардных долей секунды.

Несмотря на столь короткое время жизни кубита, ниобий привлекает внимание. Кубит на основе ниобия может работать при более высоких температурах, чем его алюминиевый аналог, и поэтому требует меньшего охлаждения. Кроме того, он может работать в восьмикратном диапазоне частот и в 18 000 раз более широком диапазоне магнитных полей по сравнению с алюминиевыми кубитами, что расширяет возможности использования семейства сверхпроводящих кубитов.

В одном отношении между двумя материалами не было никакого соперничества: Рабочий диапазон ниобия превосходил диапазон алюминия. Но в течение многих лет короткое время когерентности делало ниобиевые квабиты неподъемными.

Никто не делал так много кубитов из ниобиевых переходов, потому что они были ограничены когерентностью, — говорит Анферов.

Но наша группа хотела сделать квабит, который мог бы работать при более высоких температурах и в большем диапазоне частот — при 1 К и 100 гигагерцах. И для обоих этих свойств алюминия недостаточно. Нам нужно было что-то другое.

Поэтому команда снова обратила внимание на ниобий.

Уменьшение потерь

В частности, они рассмотрели ниобиевый джозефсоновский переход. Джозефсоновский переход — это сердце сверхпроводящего кубита, обрабатывающее информацию.

При классической обработке информации данные поступают в виде битов, которые представляют собой либо 0, либо 1. В квантовой обработке информации кубиты представляют собой смесь 0 и 1. Информация сверхпроводящего кубита «живет» в виде смеси 0 и 1 внутри перехода. Чем дольше переход может поддерживать информацию в таком смешанном состоянии, тем лучше переход и тем лучше кубит.

По своей структуре джозефсоновский переход напоминает сэндвич, состоящий из слоя непроводящего материала, зажатого между двумя слоями сверхпроводящего металла. Проводник — это материал, который обеспечивает легкое прохождение электрического тока. Сверхпроводник делает все возможное: он проводит электрический ток с нулевым сопротивлением. Электромагнитная энергия течет между внешними слоями перехода в смешанном квантовом состоянии.

Типичный, надежный алюминиевый джозефсоновский переход состоит из двух слоев алюминия и среднего слоя оксида алюминия. Типичный ниобиевый переход состоит из двух слоев ниобия и среднего слоя оксида ниобия.

Группа Шустера обнаружила, что слой оксида ниобия на переходе отнимает энергию, необходимую для поддержания квантовых состояний. Они также определили, что поддерживающая архитектура ниобиевых переходов является большим источником потери энергии, что приводит к затуханию квантового состояния кубита.

Прорыв команды был связан как с новым расположением спаев, так и с новой техникой изготовления.

В новом расположении использовался знакомый друг — алюминий. Конструкция позволила отказаться от оксида ниобия, высасывающего энергию. Вместо двух отдельных материалов использовались три. В результате получился трехслойный переход с низкими потерями — ниобий, алюминий, оксид алюминия, алюминий, ниобий.

Мы использовали подход, позволяющий получить лучшее из двух миров, — говорит Анферов.

Тонкий слой алюминия может унаследовать сверхпроводящие свойства ниобия, расположенного рядом. Таким образом, мы можем использовать проверенные химические свойства алюминия и при этом получить сверхпроводящие свойства ниобия.

При изготовлении группа удалила строительные леса, которые поддерживали ниобиевый переход в предыдущих схемах. Они нашли способ сохранить структуру перехода, избавившись от посторонних материалов, вызывающих потери, которые мешали когерентности в предыдущих схемах.

Оказалось, что простое избавление от мусора помогло, — говорит Анферов.

Рождение нового кубита

Включив новый переход в сверхпроводящие кубиты, группа Шустера добилась времени когерентности в 62 миллионные доли секунды, что в 150 раз больше, чем у предшественников из ниобия, показавших лучшие результаты. Кроме того, коэффициент качества — показатель того, насколько хорошо кубиты сохраняют энергию — составил 2,57 x 105, что в 100 раз лучше, чем у предыдущих кубитов на основе ниобия, и конкурирует с коэффициентами качества кубитов на основе алюминия.

Мы сделали этот переход, который по-прежнему обладает прекрасными свойствами ниобия, и мы улучшили свойства потерь в переходе, — говорит Анферов.

Мы можем напрямую превзойти любой алюминиевый квабит, потому что алюминий — это во многом более плохой материал. Теперь у меня есть кубит, который не умирает при более высоких температурах, что является большим плюсом.

Полученные результаты, вероятно, повысят место ниобия в ряду материалов для сверхпроводящих кубитов.

Это был многообещающий первый опыт, воскресивший ниобиевые переходы, — говорит Шустер.

Благодаря широким возможностям работы кубитов на основе ниобия мы открываем целый ряд новых возможностей для будущих квантовых технологий.

26.02.2024


Подписаться в Telegram



Хайтек

Applied Physics Express: Изобретен компактный лазер для дезинфекции
Applied Physics Express: Изобретен компактный лазер для дезинфекции

Первый в мире компактный синий полупровод...

PNAS: Создан реактор для безопасной добычи лития из соляных растворов
PNAS: Создан реактор для безопасной добычи лития из соляных растворов

Новое устройство, которое позволяет добывать л...

В ТПУ создали многоразовые накопители водорода из отечественного сырья
В ТПУ создали многоразовые накопители водорода из отечественного сырья

Более дешевые металлогидридные накопители водо...

Новый подход к производству цифрового света решает проблемы 3D-печати
Новый подход к производству цифрового света решает проблемы 3D-печати

Новый метод производства цифрового света для&n...

AEM: Гибридный полупроводник позволит лучше понять спинтронику
AEM: Гибридный полупроводник позволит лучше понять спинтронику

Электроны вращаются без электрического за...

Томские ученые представили цифровое решение для оптимизации НПЗ
Томские ученые представили цифровое решение для оптимизации НПЗ

Новый программный комплекс представили ученые ...

В НГУ разработали первые фильтры для технологии связи 6G
В НГУ разработали первые фильтры для технологии связи 6G

Уникальные фильтры для импульсной терагер...

Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет
Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет

Физическая модель, которая описывает взаимодей...

Новый метод синтеза лекарств открыли российские химики
Новый метод синтеза лекарств открыли российские химики

Новый метод синтеза производных пирролизидина ...

Поиск на сайте

Знатоки клуба инноваций


ТОП - Новости мира, инновации

Исследование НИУ ВШЭ: Курящего проще обвести вокруг пальца
Исследование НИУ ВШЭ: Курящего проще обвести вокруг пальца
В АлтГУ вывели штамм бактерий для замены антибиотиков в животноводстве
В АлтГУ вывели штамм бактерий для замены антибиотиков в животноводстве
SciAdv: На Марсе была горячая вода — найдено доказательство в древнем метеорите
SciAdv: На Марсе была горячая вода — найдено доказательство в древнем метеорите
В МФТИ создали бота для распознавания нот
В МФТИ создали бота для распознавания нот
В ТОГУ будут использовать лазерные сканеры для создания идеальных зданий
В ТОГУ будут использовать лазерные сканеры для создания идеальных зданий
Science: У шимпанзе есть слабо развитая культура
Science: У шимпанзе есть слабо развитая культура
Ученые МФТИ придумали, как пропатчить сердце
Ученые МФТИ придумали, как пропатчить сердце
Ученые научились производить заживляющие наночастицы в промышленных масштабах
Ученые научились производить заживляющие наночастицы в промышленных масштабах
В ТПУ научились управлять свойствами графена с помощью лазера
В ТПУ научились управлять свойствами графена с помощью лазера
Surfaces and Interfaces: Куркума и серебро на мембранах стерилизуют вирусы
Surfaces and Interfaces: Куркума и серебро на мембранах стерилизуют вирусы
Внеклеточные везикулы — новое слово в лечении воспалительных заболеваний кишечника
Внеклеточные везикулы — новое слово в лечении воспалительных заболеваний кишечника
1 укол вместо 15: в Челябинске предложили революционный метод лечения рака
1 укол вместо 15: в Челябинске предложили революционный метод лечения рака
The American Journal of Human Genetics: Бесплодие может быть вызвано мутацией
The American Journal of Human Genetics: Бесплодие может быть вызвано мутацией
Исследована двойная роль клеточного регулятора CED-9 в апоптозе
Исследована двойная роль клеточного регулятора CED-9 в апоптозе
Ученые из Новосибирска установили возраст шерсти детеныша саблезубой кошки
Ученые из Новосибирска установили возраст шерсти детеныша саблезубой кошки

Новости компаний, релизы

Дмитрий Чернышенко провел рабочую встречу с главой Татарстана Рустамом Миннихановым
Нижегородский завод продемонстрировал разработанные по нацпроекту материалы на AMTEXPO
Делегация Набережночелнинского педагогического университета прибыла в Алжир
В Москве открыт памятник «отцу» советского ядерного оружия
3D-печать: от самых смелых концепций до твердой реальности