Science: Создан протокол квантовой памяти с использованием ядерных поглотителей
Свет — это носитель информации, который используют не только в классических коммуникациях, но и в квантовых технологиях, таких как квантовые сети и вычисления. Однако обрабатывать световые сигналы сложнее, чем электронные.
Международная группа учёных во главе с доктором Ольгой Кочаровской, заслуженным профессором кафедры физики и астрономии Техасского университета A&M, предложила новый способ хранения и высвобождения рентгеновских импульсов на уровне одного фотона. Эта концепция может найти применение в будущих рентгеновских квантовых технологиях.
Группа под руководством профессора Института Гельмгольца в Йене доктора Ральфа Рёльсбергера провела исследование на синхротронных источниках PETRA III в Немецком электронном синхротроне (DESY) в Гамбурге и Европейском центре синхротронного излучения во Франции. В результате была впервые реализована квантовая память в жёстком рентгеновском диапазоне.
Результаты исследования опубликованы в журнале Science Advances.
Квантовая память — это важный элемент квантовой сети, который позволяет хранить и извлекать квантовую информацию. Фотоны являются быстрыми и надёжными носителями квантовой информации, но их трудно удерживать в стационарном состоянии для последующего использования. Один из способов решить эту проблему — впечатать информацию в квазистационарную среду в виде поляризационной или спиновой волны с большим временем когерентности и выпустить её обратно через переизлучение исходных фотонов.
Кочаровская рассказала, что было создано несколько протоколов для квантовой памяти, но они ограничены оптическими фотонами и атомными ансамблями.
Использование ядерных ансамблей вместо атомных позволяет увеличить время памяти даже при высокой плотности твёрдого тела и комнатной температуре. Это возможно благодаря тому, что ядерные переходы менее чувствительны к внешним полям из-за малых размеров ядер.
Сочетание жёсткой фокусировки высокочастотных фотонов с ядерными ансамблями может привести к созданию долгоживущей широкополосной компактной твердотельной квантовой памяти.
Доктор Сивэнь Чжан, постдокторант из группы Кочаровской, который участвовал в эксперименте и был соавтором статьи команды, объясняет, что прямое распространение оптических/атомных протоколов на рентгеновские/ядерные оказывается сложным или невозможным. Поэтому в предыдущей работе был предложен новый протокол.
Идея нового протокола проста с точки зрения квантовых основ.
Набор движущихся ядерных поглотителей формирует частотную гребенку в спектре поглощения из-за движения. Короткий импульс со спектром, совпадающим с гребенкой, будет переизлучен с задержкой из-за конструктивной интерференции между различными спектральными компонентами.
В эксперименте мы использовали один стационарный и шесть синхронно движущихся поглотителей, которые сформировали семизубую частотную гребенку, — добавил Чжан.
Время жизни ядерной когерентности определяет максимальное время хранения данных для этого типа квантовой памяти. Использование изомеров с более долгим временем жизни, чем у изотопа железа 57, который мы выбрали для исследования, увеличило бы это время.
Протокол ядерной частотной гребенки — это квантовая память, которая работает на однофотонном уровне без потери информации. Это первое достижение для рентгеновских энергий.
Команда планирует освободить сохранённые волновые пакеты фотонов по требованию. Это может привести к запутанности между различными жёсткими рентгеновскими фотонами, основным ресурсом для квантовой обработки информации.
Исследование подчёркивает потенциал оптических квантовых технологий в диапазоне коротких волн. Он менее «шумный» из-за усреднения флуктуаций по большому количеству высокочастотных колебаний.
Авторы надеются продолжить изучение потенциала своей перестраиваемой, надёжной и универсальной платформы для развития квантовой оптики при рентгеновских энергиях.