В POSTECH приблизили будущее с растягивающейся электроникой
Исследователи POSTECH создали новую технологию. Она позволяет в реальном времени следить за изменениями структур, похожих на змей, важных для растягивающихся технологий, и показывает это с помощью цвета.

Руководил группой профессор Су Сок Чой с кафедры электротехники. В команду также вошли докторанты Сангхюн Хан, Джунхо Шин и Джиюн Парк, а ещё магистранты Хакджун Ян и Сынмин Нам.
Исследование опубликовано в издании Advanced Science.
Растягивающиеся технологии: революция в электронике следующего поколения
Растягивающаяся электроника — новое слово в мире технологий. Она может растягиваться и деформироваться без ущерба для работы. Это касается дисплеев, сенсоров, полупроводников, электронной кожи, биомиметических роботов и умной одежды.
Есть два основных подхода к созданию растягивающейся электроники:
- использование эластичных материалов, похожих на резину;
- разработка структур, которые легко совмещаются с уже существующими технологиями полупроводников, дисплеев, электродов и датчиков.
Змеевидные соединения придают эластичность электронным компонентам. Чтобы создать такую технологию, нужно хорошо понимать, как компоненты будут вести себя при растяжении.
Визуализация деформации серпантинных структур в реальном времени
Раньше учёные могли проанализировать, как деформируются змеевидные структуры, только после того, как они физически повреждались. Это значило, что исследователи полагались на теоретические модели или ограниченные данные наблюдений за предыдущими растяжениями структур. Из-за этого было сложно понять, как структура ведёт себя в реальном времени.
Учёные из POSTECH решили эту проблему с помощью изменений цвета структуры на наноуровне во время деформации. Они использовали особый материал — хиральный жидкокристаллический эластомер (CLCE). Этот материал меняет цвет, когда его растягивают. Так учёные разработали систему, которая позволяет точно увидеть деформацию в змеевидных структурах в режиме реального времени.
Кроме того, команда подтвердила результаты теоретическим анализом методом конечных элементов. Это говорит о том, что технология может быть полезна для оптимизированного дизайна.
Технологическое и промышленное значение
Этот инновационный подход устраняет необходимость в сложных процессах нанофабрикации и обеспечивает четкое понимание того, как деформируются змеевидные структуры, в режиме реального времени. Предлагая практические рекомендации по оптимизации этих структур в различных условиях растяжения, данная технология может ускорить коммерциализацию растягивающихся устройств.
Профессор Су Сок Чой отметил:
Это исследование открывает путь к точной оценке и проектированию соединительных структур, являющихся центральным элементом технологии растяжения.
Он добавил, что полученные результаты, как ожидается, расширят сферу применения и ускорят коммерциализацию в таких областях, как дисплеи, полупроводники, датчики, электронная кожа, «умная» одежда и мягкая робототехника.
Ранее ученые обнаружили наиболее растягиваемый паучий шелк.