![]() |
Ученые Брукхейвенской национальной лаборатории Министерства энергетики США успешно продемонстрировали, что автономные методы могут открывать новые материалы. Метод, основанный на искусственном интеллекте (ИИ), привел к открытию трех новых наноструктур, включая первую в своем роде наноразмерную «лестницу». Результаты исследования опубликованы сегодня в журнале Science Advances. Вновь открытые структуры образовались в результате процесса, который называется самосборкой, когда молекулы материала организуются в уникальные структуры. Ученые Брукхейвенского центра функциональных наноматериалов (CFN) являются экспертами в управлении процессом самосборки, создавая шаблоны, которые позволяют сформировать необходимые структуры для применения в микроэлектронике, катализе и других областях. Открытие наноразмерной лестницы и других новых структур еще больше расширяет сферу применения самосборки.
Сотрудники CFN стремятся создать библиотеку типов самосборных наношаблонов, чтобы расширить сферу их применения. В предыдущих исследованиях они продемонстрировали, что новые типы узоров становятся возможными при смешивании двух самособирающихся материалов.
Объединение самособирающихся материалов позволило ученым CFN открыть уникальные структуры, но это также создало новые проблемы. Поскольку в процессе самосборки можно контролировать гораздо больше параметров, поиск правильной комбинации параметров для создания новых и полезных структур — это борьба со временем. Чтобы ускорить свои исследования, ученые CFN использовали новую возможность ИИ: автономное экспериментирование. Брукхейвенские ученые из CFN разрабатывают систему искусственного интеллекта, которая может автономно определять и выполнять все этапы эксперимента. Алгоритм gpCAM от CAMERA управляет автономным принятием решений. Нынешнее исследование является первой успешной демонстрацией способности алгоритма открывать новые материалы.
Чтобы ускорить открытие материалов с помощью нового алгоритма, команда сначала разработала сложный образец со спектром свойств для анализа. Исследователи изготовили образец с помощью установки нанопроизводства CFN и провели самосборку в лаборатории синтеза материалов.
Затем команда доставила образец в NSLS-II, где генерируется сверхъяркое рентгеновское излучение для изучения структуры материалов. В партнерстве с NSLS-II CFN управляет тремя экспериментальными станциями, одна из которых использовалась в данном исследовании — линия излучения Soft Matter Interfaces (SMI).
По мере измерения образца на лучевой линии SMI алгоритм без вмешательства человека создавал модель многочисленной и разнообразной структуры материала. Модель обновлялась с каждым последующим рентгеновским измерением, делая каждое измерение более глубоким и точным. В течение нескольких часов алгоритм определил три ключевые области в сложном образце для более тщательного изучения. Исследователи использовали электронную микроскопию для получения изображений этих ключевых областей в мельчайших деталях, обнаружив рельсы и перекладины наноразмерной лестницы, а также другие новые особенности. От начала до конца эксперимент длился около шести часов. По оценкам исследователей, при использовании традиционных методов им потребовалось бы около месяца, чтобы совершить это открытие.
Однако автономные методы не только ускоряют процесс, но и расширяют сферу исследований, что означает, что ученые смогут решать более сложные научные задачи.
Команда активно применяет свой автономный метод исследования для решения еще более сложных задач по обнаружению материалов для самосборки, а также других классов материалов. Методы автономного обнаружения адаптируются и могут использоваться для решения любой исследовательской задачи.
14.01.2023 |
Нано
![]() | |
Ловцы волн в наномире: как муар заставляет материю двигаться | |
Вы замечали, когда накладываете две сетча... |
![]() | |
Лазерная магия: ученые создают невидимые метки для защиты от подделок | |
Ученые придумали новый способ наносить на ... |
![]() | |
Теплицы без жары: как ученые охладили воздух и удвоили урожай | |
Ученые из Университета науки и техно... |
![]() | |
В ПГУ представили уникальный метод моделирования графеновых устройств | |
В Пензенском государственном университете груп... |
![]() | |
Красное свечение, которое не гаснет: прорыв в световых технологиях | |
Ученые создали новый материал, который может и... |
![]() | |
Питание через иглы: как ученые создают умные удобрения | |
Ученые из Томского политехнического униве... |
![]() | |
Холодный ритм: что происходит с наноматериалами при -160°C | |
Когда вода замерзает или кипит, она ... |
![]() | |
Маленькие частицы, большие возможности: нанотехнологии помогают бороться с раком | |
Ученые из Томского политехнического униве... |
![]() | |
Наночастицы в движении: ученые увидели невидимое | |
Группа ученых придумала новый способ, который ... |
![]() | |
Плазма, графен и газ: как ученые улучшили чувствительность датчиков | |
Технологии обнаружения газов сегодня важны как... |
![]() | |
Вода без яда: как томские ученые победили мышьяк | |
Ученые Томского политехнического университета ... |
![]() | |
Графен: как один материал меняет энергетику, моду и космос | |
Графен — это суперматериал, ко... |
![]() | |
Наносферы против парникового эффекта: как водород станет топливом будущего | |
Ученые создали пустотелые наносферы из кв... |
![]() | |
Платиновая корона и танец молекул: как газы меняют структуру материала | |
Исследователи из Токийского столичного ун... |
![]() | |
Электрические нановорота: как ученые научились управлять молекулами | |
Ученые из Университета Осаки создали крош... |
![]() | |
Казанские ученые научились «готовить» наноалмазы в плазме | |
Ученые придумали умную математическую модель, ... |
![]() | |
Созданы новые подложки для культивирования клеток на основе анодного глинозема | |
Наноструктурированные поверхности из глин... |
![]() | |
Nano Letters: Валлитроника открывает новые возможности обработки данных | |
Транспорт электронов в двухслойном графен... |
![]() | |
Новый материал для электроники будущего: фосфид ниобия может изменить технологии | |
По мере того как компьютерные чипы станов... |
![]() | |
ES&T: Наномембрана со смешанным зарядом — инновация в очистке сточных вод | |
Исследовательская группа под руководством... |
![]() | |
Nano Letters: Новая технология поможет лучше понять мир на молекулярном уровне | |
С 1950-х годов ученые используют радиоволны дл... |
![]() | |
NatPhot: Новый шаг к революции в обработке данных — люминесцентные нанокристаллы | |
Ученые, в том числе исследователь хи... |
![]() | |
Свет — повелитель молекул: ученые совершили прорыв в химии | |
Ученые из Болонского университета под&nbs... |
![]() | |
Наночастицы селена помогут укрепить иммунитет и защитить сердце | |
Ученые создали наночастицы селена, которые мож... |
![]() | |
Студенты из Самары создали новое антимикробное покрытие для ткани | |
Студенты из университета имени Королева в... |
![]() | |
Живые «таймеры»: как молекулярные механизмы помогают организмам измерять время | |
Живые организмы следят за временем и ... |
![]() | |
Наносистема доставки молекул предвещает безопасную эру в разработке лекарств | |
Инновационную систему доставки лекарств, облад... |
![]() | |
JPC: Нанопузырьки совершат прорыв в эффективности химических реакций | |
Газы необходимы для многих химических реа... |
![]() | |
Сенсоры нового поколения: как молодые ученые ТулГУ приближают будущее медицины | |
Новые материалы, которые могут помочь в с... |
![]() | |
Nano Letters: Ученые научились делать нанотрубки, направленные в одну сторону | |
Впервые создали нанотрубки из дисульфида ... |