Как графен может изменить вашу жизнь: от питьевой воды до тепла в доме

Жидкости с добавлением графена высыхают под лучами солнца на 95% быстрее, чем обычная вода, выяснили в ходе исследования московские ученые. Кроме того, такие жидкости поглощают солнечную энергию и преобразуют ее в тепло на 48% лучше.

Это свойство можно использовать для создания систем опреснения воды. С помощью таких систем можно очистить сточные или пластовые воды, а также морскую воду.

Также ученые обнаружили, что жидкость с графеном хорошо поглощает солнечные лучи. Это поможет создать новый вид солнечного коллектора — устройства для сбора солнечной энергии.

Графен — это очень тонкий, но прочный наноматериал, сделанный из углерода. Он хорошо проводит тепло и имеет большую площадь поверхности по сравнению с его объемом. Поэтому графен используют в батареях и конденсаторах.

Графен также можно добавить в жидкости, чтобы создать наножидкости. Наножидкости нагреваются от света, и полученное тепло помогает испарять, а затем конденсировать чистую воду. Таким образом можно получить пресную воду из морской или сточных вод.

Результаты исследования, поддержанного грантом Российского научного фонда, опубликованы в журнале Solar Energy.

Сейчас для того, чтобы сделать морскую воду пресной, используют специальные установки с мембранами. Но для их работы нужно много энергии, а материалы в них приходится часто менять.

Графеновые наножидкости могут упростить и удешевить опреснение воды. Однако пока не до конца ясно, как свет с разной длиной волны влияет на нагрев графена и жидкостей с ним. Исследования в этой области помогут найти материал, который будет эффективно превращать солнечный свет в тепловую энергию. А ее можно использовать для получения чистой воды.

Ученые из НИУ МЭИ впервые изучили, как спектр света влияет на нагрев и испарение графеновых наножидкостей. Сначала они расщепили графен так, чтобы получились нанохлопья размером с клетку кожи человека. Эти хлопья состояли из 3–5 слоев графена. Чтобы наночастицы графена не оседали на дно сосуда с жидкостью, ученые отслаивали графен прямо в воде. Это помогало предотвратить слипание графеновых хлопьев и их утяжеление.

Ученые создали специальную установку для изучения нагрева и испарения жидкостей. В нее входили:

  • источник света;
  • контейнер с жидкостью;
  • приборы для измерения температуры и массы испаряющейся жидкости.

С помощью этой установки исследователи сравнили испарение графеновой наножидкости (дистиллированной воды с добавлением графена) и обычной дистиллированной воды. Они измерили температуру и массу испаряющейся жидкости под воздействием синего, зеленого, красного света, а также ближнего и дальнего инфракрасного излучения.

Исследователи обнаружили, что дальний инфракрасный свет поглощается в основном водой, поэтому графен и дистиллированная вода нагрелись одинаково.

Когда ученые использовали зеленый и ближний инфракрасный свет, вода почти не нагрелась, потому что не поглотила лучи. А температура графеновой жидкости за полтора часа эксперимента увеличилась с 15,5 °C до 18,5 °C. Это значит, что излучение с такими длинами волн поглощается графеном, и этот спектр света лучше всего подходит для получения тепла с помощью графеновых наножидкостей.

Облучение синим светом не изменило температуры ни одного из образцов. Красный свет не повлиял на графен, но охладил воду.

Эти результаты помогут выбирать нужный свет в зависимости от задач, которые стоят перед промышленностью.

Исследователи обнаружили, что под солнечными лучами графен ускоряет испарение воды на 68–95% по сравнению с чистой водой. Это значит, что графен можно использовать для быстрого получения питьевой воды.

Смесь воды и графеновых хлопьев может поглощать солнечный свет и преобразовывать его в тепловую энергию. Это открытие поможет решить многие задачи в области солнечной энергетики и традиционных тепловых систем. Но сначала нужно понять, как сделать такие смеси более устойчивыми. Мы продолжим изучать графен и другие похожие материалы, чтобы использовать их в различных устройствах для охлаждения, хранения тепловой энергии и ее преобразования в электрическую, — рассказала руководитель проекта Инна Михайлова, кандидат технических наук, доцент кафедры низких температур Московского энергетического института.

Ранее мы сообщали, что, по мнению физиков, графен в 10 раз прочнее стали.

30.11.2024

Подписаться: Телеграм | Дзен | Вконтакте


Нано

Растения под капельницей: новая эра сельского хозяйства
Растения под капельницей: новая эра сельского хозяйства

Когда фермеры обрабатывают растения пестицидам...

Магнитные курьеры: шелк и железо доставят лекарство точно в цель
Магнитные курьеры: шелк и железо доставят лекарство точно в цель

Представьте, что врач может направлять жи...

Железное дерево: ученые превращают дуб в материал будущего
Железное дерево: ученые превращают дуб в материал будущего

Ученые и инженеры создают прочные материа...

Запутанность без шума: ученые нашли способ очистить квантовую связь
Запутанность без шума: ученые нашли способ очистить квантовую связь

Квантовая связь давно привлекает ученых: если&...

ДНК-курьеры: оригами из молекул помогает бороться с раком
ДНК-курьеры: оригами из молекул помогает бороться с раком

Одна из главных проблем в лечении ра...

Одномерный магнетизм: металл Ti₄MnBi₂ поставил точку в споре физиков
Одномерный магнетизм: металл Ti₄MnBi₂ поставил точку в споре физиков

Исследователи из Института квантовых мате...

Наночастицы золота — новая надежда для потерявших зрение
Наночастицы золота — новая надежда для потерявших зрение

Ученые из Университета Брауна обнаружили,...

Носом к опухоли: как запах черемухи помогает лечить рак мозга
Носом к опухоли: как запах черемухи помогает лечить рак мозга

Ученые из Томского политеха придумали, ка...

Невидимая угроза: как нанопластик проникает в глаза
Невидимая угроза: как нанопластик проникает в глаза

Микропластик и еще более мелкие нано...

Весь RGB в одной точке: совершен прорыв в объемных дисплеях
Весь RGB в одной точке: совершен прорыв в объемных дисплеях

Южнокорейские ученые из Института науки и...

Пластиковая пыль: самые опасные частицы труднее всего обнаружить
Пластиковая пыль: самые опасные частицы труднее всего обнаружить

Микропластик уже давно признан угрозой дл...

Полосы, которых не должно быть: ученые нашли новый муаровый узор
Полосы, которых не должно быть: ученые нашли новый муаровый узор

Представьте, что свет проходит через два&...

Ловцы волн в наномире: как муар заставляет материю двигаться
Ловцы волн в наномире: как муар заставляет материю двигаться

Вы замечали, когда накладываете две сетча...

В ПГУ представили уникальный метод моделирования графеновых устройств
В ПГУ представили уникальный метод моделирования графеновых устройств

В Пензенском государственном университете груп...

Красное свечение, которое не гаснет: прорыв в световых технологиях
Красное свечение, которое не гаснет: прорыв в световых технологиях

Ученые создали новый материал, который может и...

Питание через иглы: как ученые создают умные удобрения
Питание через иглы: как ученые создают умные удобрения

Ученые из Томского политехнического униве...

Холодный ритм: что происходит с наноматериалами при -160°C
Холодный ритм: что происходит с наноматериалами при -160°C

Когда вода замерзает или кипит, она ...

Наночастицы в движении: ученые увидели невидимое
Наночастицы в движении: ученые увидели невидимое

Группа ученых придумала новый способ, который ...

Плазма, графен и газ: как ученые улучшили чувствительность датчиков
Плазма, графен и газ: как ученые улучшили чувствительность датчиков

Технологии обнаружения газов сегодня важны как...

Вода без яда: как томские ученые победили мышьяк
Вода без яда: как томские ученые победили мышьяк

Ученые Томского политехнического университета ...

Поиск на сайте

ТОП - Новости мира, инновации

Зарядка сквозь тело: как ультразвук заменит провода
Зарядка сквозь тело: как ультразвук заменит провода
Цифровые решения российских банков: трейдинг, чат-бот и ЖКХ
Цифровые решения российских банков: трейдинг, чат-бот и ЖКХ
Ученые нашли способ заменить литий в батареях с помощью углеродных конусов
Ученые нашли способ заменить литий в батареях с помощью углеродных конусов
Растения под капельницей: новая эра сельского хозяйства
Растения под капельницей: новая эра сельского хозяйства
Квантовые вычисления помогут зданиям экономить энергию
Квантовые вычисления помогут зданиям экономить энергию
Слепые зоны уверенности: почему тревожные люди не видят своих успехов
Слепые зоны уверенности: почему тревожные люди не видят своих успехов
Ученые научились анализировать квантовые системы несмотря на помехи
Ученые научились анализировать квантовые системы несмотря на помехи
Грязная работа: как ток очищает воду и добывает метан
Грязная работа: как ток очищает воду и добывает метан
Лабораторный 3D-рентген заменит синхротроны в некоторых исследованиях
Лабораторный 3D-рентген заменит синхротроны в некоторых исследованиях
Магнитные курьеры: шелк и железо доставят лекарство точно в цель
Магнитные курьеры: шелк и железо доставят лекарство точно в цель
Зеленый — играем, синий — не мешай: браслет учит детей понимать друг друга
Зеленый — играем, синий — не мешай: браслет учит детей понимать друг друга
Ученые измерили выбросы парниковых газов из озера Баскунчак
Ученые измерили выбросы парниковых газов из озера Баскунчак
Не бетон, а стальная резина: новый материал для небоскребов будущего
Не бетон, а стальная резина: новый материал для небоскребов будущего
Как Китай снижает нагрузку на сеть при росте мощных зарядок
Как Китай снижает нагрузку на сеть при росте мощных зарядок
Деревья-оракулы: что скрывает биоэлектрический шепот леса
Деревья-оракулы: что скрывает биоэлектрический шепот леса

Новости компаний, релизы

Школы без пыльных кабинетов: что дал проект «Современная школа»
Ход конем: в Шагонаре прошел первый шахматный турнир для дошколят
Не только Ярослав — Мудрый: кто сегодня двигает науку в Новгороде
В Якутии запустят производство дронов
Российские технологии в сердце Азии: что показали на ИННОПРОМ