Кремниевые транзисторы, которые используются для усиления и переключения сигналов, важны для большинства электронных устройств. Но у кремниевых полупроводниковых технологий есть фундаментальное физическое ограничение: транзисторы не могут работать при напряжении ниже определённого уровня. И это обстоятельство мешает повышению энергоэффективности компьютеров и другой электроники. Исследователи Массачусетского технологического института создали новый тип трёхмерного транзистора, чтобы преодолеть ограничения кремния. В этих устройствах используются вертикальные нанопроволоки шириной в несколько нанометров. Они могут обеспечить производительность, сравнимую с современными кремниевыми транзисторами, и при этом эффективно работать при гораздо более низком напряжении.
Транзисторы используют квантово-механические свойства, чтобы одновременно работать при низком напряжении и иметь высокую производительность. При этом размер транзистора составляет всего несколько квадратных нанометров. Благодаря малым размерам в компьютерный чип поместится больше таких 3D-транзисторов, что позволит создать быструю, мощную и энергоэффективную электронику. Профессор инженерных наук Доннер Массачусетского технологического института Хесус дель Аламо считает, что работа Яньцзе — концептуальный прорыв, который позволит добиться большего, но для коммерческого использования этого подхода нужно преодолеть множество трудностей. В работе над статьей принимают участие Цзю Ли, профессор ядерной инженерии Tokyo Electric Power Company и профессор материаловедения и инженерии Массачусетского технологического института; аспирант EECS Хао Танг; постдок Массачусетского технологического института Баоминг Ванг; профессора Марко Пала и Давид Эссени из Университета Удине в Италии. Исследование опубликовано в журнале Nature Electronics. Нужно превзойти кремнийВ электронных устройствах кремниевые транзисторы часто работают как переключатели. Когда на транзистор подают напряжение, он переходит из состояния «выключено» в состояние „включено“. Это происходит потому, что электроны преодолевают энергетический барьер. Резкость перехода транзистора из одного состояния в другое называется крутизной переключения. Чем круче наклон, тем меньше напряжения требуется для включения транзистора и тем выше его энергоэффективность. Однако из-за движения электронов через энергетический барьер при комнатной температуре для включения транзистора требуется определённое минимальное напряжение. Исследователи из Массачусетского технологического института использовали антимонид галлия и арсенид индия, чтобы преодолеть физические ограничения кремния. Они разработали устройства, основанные на квантовом туннелировании — способности электронов проникать через барьеры. С помощью туннельных транзисторов электроны проходят через энергетический барьер, а не преодолевают его. Это позволяет легко включать и выключать устройство. Однако такие транзисторы работают с малым током, что снижает производительность электронного устройства. Для создания мощных транзисторных переключателей нужен более высокий ток. Тонкая работаС помощью инструментов MIT.nano инженеры смогли контролировать 3D-геометрию транзисторов и создать вертикальные нанопроволочные гетероструктуры диаметром 6 нанометров. Это самые маленькие 3D-транзисторы на сегодняшний день. Точная инженерия позволила добиться резкого переключения и высокого тока благодаря квантовому удержанию. Оно возникает, когда электрон заключён в маленькое пространство и не может перемещаться. В этом случае масса электрона и свойства материала меняются, позволяя электрону легче туннелировать через барьер. Исследователи могут создавать очень тонкий барьер, потому что транзисторы маленькие. Это позволяет достичь сильного эффекта квантового удержания.
Создать достаточно маленькое устройство было сложной задачей.
Исследователи протестировали свои устройства и выяснили, что резкость переключения оказалась лучше, чем у обычных кремниевых транзисторов. Их устройства работали в 20 раз лучше аналогичных туннельных транзисторов.
Сейчас исследователи работают над улучшением методов изготовления, чтобы транзисторы были более равномерными по всему чипу. Отклонение в 1 нанометр может изменить поведение электронов и повлиять на работу устройства. Они также изучают вертикальные ребристые структуры, которые могут улучшить однородность устройств на чипе. 04.11.2024 |
Нано
NatElec: Нанотранзисторы преодолеют ограничения кремниевых полупроводников | |
Кремниевые транзисторы, которые используются д... |
Ученые создали устройство для хранения и передачи информации с помощью света | |
Устройство на основе углеродной нанотрубк... |
Созданы частицы с квантовыми точками для многоразового применения в биомедицине | |
Новые светящиеся микрочастицы, состоящие из&nb... |
В России доказали эффективность нанокомпозитов для лечения атеросклероза | |
Модифицированные нанокомпозиты для лечени... |
Science: Открыт новый метод выращивания полезных квантовых точек | |
Квантовые точки, или полупроводниковые на... |
PNAS: Новый метод поможет собирать в 10 раз больше золота из электронных отходов | |
Губку из оксида графена и хитозана д... |
Nature Nanotechnology: Идет создание упрощенной формы жизни | |
Учёные много лет пытаются понять, как&nbs |
LS&A: Разработан метод синтеза наночастиц высокоэнтропийных сплавов | |
Быстрое создание наночастиц высокоэнтропийных ... |
Nano Letters: Тройные стыки — залог сохранения стабильности наноматериалов | |
Как создать материалы, которые будут прочнее и... |
Nature Nanotechnology: Нанодиски для стимуляции мозга заменят инвазивные электроды | |
Новые магнитные нанодиски разработали учёные и... |
NatComm: Создана основа для практического применения наночастиц в военной связи | |
Новую технологию шифрования связи в видим... |
В СПбГУ усовершенствовали полупроводниковые наноструктуры для оптоэлектроники | |
Учёные Санкт-Петербургского государственного у... |
NatComm: Белки-шапероны помогают обычным белкам принять правильную форму | |
Белки играют важную роль в организме, и&n... |
EMBO Reports: Разработан биологический подход для изучения паттернинга тканей | |
Как морфогены в сочетании с клеточно... |
LS&A: Разработан хиральный нанокомпозит для зондирования сероводорода | |
С развитием нанотехнологий создано много искус... |
NatComm: Созданы чувствительные к магнитному полю спиновые кубиты из нанотрубок | |
Нанотрубки из нитрида бора, BNNTs, содерж... |
NatNanotechnol: Силоксановые наночастицы целятся точно в органы при мРНК терапии | |
Инженеры из Пенсильвании открыли новый сп... |
ACS Nano: Открыты светопоглощающие свойства ахиральных материалов | |
Исследователи из Университета Оттавы сдел... |
Nature Communications: Наноструктуры на дне океана намекают на зарождение жизни | |
Исследователи из Центра устойчивого ресур... |
ACS Nano: Искусственный паучий шелк превратят в медицинские материалы | |
Скоро Хэллоуин, пора украшать дома страшными в... |
AFM: Антибактериальные поверхности из графена уничтожат 99,9% патогенов | |
Графен, обладающий сильными бактерицидными сво... |
Российские ученые подтвердили эффективность золотых наночастиц против опухолей | |
Исследование показало, что эффектив... |
Physical Review Letters: Ученые подобрались ближе к искоренению наношума | |
Благодаря наноразмерным устройствам исследоват... |
ACS Nano: Новое открытие улучшит дизайн микроэлектронных устройств | |
Как работает электроника нового поколения и&nb... |
Small: Совершен прорыв в создании пленок с использованием оксида графена | |
Исследовательская группа из Университета ... |
В УГНТУ разработали установку по переработке печной сажи в графен | |
Установку, которая перерабатывает печную сажу&... |
Nature Photonics: Уникальный нанодиск продвигает исследования в области фотоники | |
Нанообъект с уникальными оптическими свой... |
ТПУ: Графен позволяет управлять свойствами диэлектриков с высоким преломлением | |
Учёные Инженерной школы неразрушающего контрол... |
Science: Стало возможным массовое производство металлических нанопроводов | |
Новый метод выращивания крошечных металлически... |
NatNano: Новый метод молекулярной инженерии позволит создавать сложные органоиды | |
Новый метод молекулярной инженерии позволяет в... |