Держать удар: ученые улучшили нанопену для защитного спортивного снаряжения

Открытие того факта, что футболисты, получая удары по голове на протяжении своей профессиональной карьеры, неосознанно получают необратимые повреждения головного мозга, привело к спешному созданию более совершенных средств защиты головы.

Одним из таких изобретений является нанопена — материал, из которого изготавливаются футбольные шлемы.

Благодаря доценту кафедры машиностроения и аэрокосмической техники Баосину Сю (Baoxing Xu) из Университета Вирджинии и его команде исследователей нанопена только что получила значительное усовершенствование, которое может коснуться и защитного спортивного снаряжения. Новая разработка объединяет нанопенопласт с «несмачиваемой ионизированной жидкостью» — формой воды, которая, как теперь известно Ксу и его исследовательской группе, идеально сочетается с нанопенопластом, создавая жидкую подушку. Этот универсальный и быстро реагирующий материал обеспечит лучшую защиту спортсменам, а также перспективен для использования в защите пассажиров автомобилей и помощи пациентам больниц с помощью носимых медицинских устройств.

Результаты исследования группы ученых были недавно опубликованы в журнале Advanced Materials.

Для обеспечения максимальной безопасности защитная пена, проложенная между внутренним и внешним слоями шлема, должна выдерживать не только один, но и несколько ударов, игра за игрой. Материал должен быть достаточно амортизирующим, чтобы создать мягкое место для приземления головы, но при этом достаточно упругим, чтобы отскочить и быть готовым к следующему удару. Материал должен быть упругим, но не жестким, потому что «жесткий» материал тоже травмирует голову. Чтобы один материал выполнял все эти функции — задача не из легких.

Группа исследователей развила свою работу, ранее опубликованную в журнале Proceedings of the National Academy of Sciences и начавшуюся изучением использования жидкостей в нанопене, и создала материал, отвечающий сложным требованиям безопасности в высококонтактных видах спорта.

Мы обнаружили, что создание жидкой наноподушки с использованием ионизированной воды вместо обычной воды существенно изменило характеристики материала, — сказал Сюй.

Использование ионизированной воды в конструкции является прорывом, поскольку мы обнаружили необычную координационную сеть жидкость-ион, что позволило создать более сложный материал.

Жидкая наноподушка позволяет внутренней части шлема сжиматься и рассеивать силу удара, минимизируя силу, передаваемую на голову, и снижая риск получения травмы. Кроме того, после удара она восстанавливает свою первоначальную форму, позволяя наносить многократные удары и обеспечивая постоянную эффективность защиты головы спортсмена во время игры.

Дополнительным преимуществом, — продолжает Сюй, — является то, что усовершенствованный материал более гибкий и гораздо более удобный в носке.

Материал динамически реагирует на внешние толчки благодаря тому, что в нем созданы ионные кластеры и сети.

Жидкие подушки могут быть разработаны как более легкие, компактные и безопасные защитные устройства, — заявил доцент Вейи Лу (Weiyi Lu), сотрудник отдела гражданского строительства Мичиганского государственного университета.

Кроме того, уменьшение массы и размеров жидких наноподушек произведет революцию в дизайне жесткой оболочки будущих шлемов. Возможно, однажды вы будете наблюдать за футбольным матчем и удивитесь тому, как маленькие шлемы защищают головы игроков. Возможно, это благодаря нашему новому материалу.

В традиционной нанопене механизм защиты основан на свойствах материала, реагирующих на его сминание или механическую деформацию, таких как «коллапс» и „уплотнение“. Коллапс — это то, что звучит, а денсификация — сильная деформация пены при сильном ударе. После разрушения и сгущения традиционная нанопена плохо восстанавливается из-за постоянной деформации материалов, что делает защиту одноразовой. По сравнению с жидкой нанопеной эти свойства проявляются очень медленно (в течение нескольких миллисекунд) и не отвечают „требованию снижения высокой силы“, то есть не могут эффективно поглощать и рассеивать удары высокой силы за короткий промежуток времени, связанный со столкновениями и ударами.

Еще одним недостатком традиционной нанопены является то, что при многократных небольших ударах, не деформирующих материал, пена становится абсолютно «твердой» и ведет себя как жесткое тело, не способное обеспечить защиту. Такая жесткость потенциально может привести к травмам и повреждениям мягких тканей, например, к травматическому повреждению головного мозга (TBI).

Манипулируя механическими свойствами материалов — объединяя нанопористые материалы с «несмачивающей жидкостью» или ионизированной водой, — команда разработала способ получения материала, способного реагировать на удары за несколько микросекунд, поскольку такая комбинация позволяет обеспечить сверхбыстрый перенос жидкости в наноконфигурированной среде. Кроме того, при разгрузке, т.е. после ударов, жидкая наноподушка, благодаря своей несмачиваемости, может возвращаться к своей первоначальной форме, поскольку жидкость выбрасывается из пор, выдерживая таким образом повторные удары. Эта способность к динамическому изменению формы и реформированию также решает проблему жесткости материала при микроударах.

Те же свойства жидкости, которые делают новую нанопенопластику более безопасной для спортивной экипировки, позволяют использовать ее и в других местах, где происходят столкновения, например в автомобилях, системы безопасности и защиты материалов которых пересматриваются с учетом наступающей эры электрических силовых установок и автоматизированных транспортных средств. Он может быть использован для создания защитных подушек, поглощающих удары при авариях или способствующих снижению вибраций и шума.

Другая цель, которая, возможно, не столь очевидна, — это роль жидкой нанопены в больничных условиях. Пена может быть использована в носимых медицинских устройствах, таких как смарт-часы, которые отслеживают частоту сердечных сокращений и другие жизненно важные показатели. Благодаря использованию технологии жидкой нанопены часы могут иметь на нижней стороне мягкий и гибкий материал, похожий на пену, который помогает повысить точность работы датчиков, обеспечивая правильный контакт с кожей. Часы могут повторять форму запястья, что делает их удобными для ношения в течение всего дня. Кроме того, пеноматериал обеспечивает дополнительную защиту, выполняя функцию амортизатора. Если вы случайно ударитесь запястьем о твердую поверхность, пена смягчит удар и предотвратит повреждение датчиков и кожи.

15.07.2023


Подписаться в Telegram



Нано

PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене
PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене

К разгадке, почему электроны могут разделяться...

FRI: Нанокапсулы с антоцианами делают привычные продукты полезнее
FRI: Нанокапсулы с антоцианами делают привычные продукты полезнее

В ходе исследования ученые обнаружили, что&nbs...

NatElec: Нанотранзисторы преодолеют ограничения кремниевых полупроводников
NatElec: Нанотранзисторы преодолеют ограничения кремниевых полупроводников

Кремниевые транзисторы, которые используются д...

Science: Открыт новый метод выращивания полезных квантовых точек
Science: Открыт новый метод выращивания полезных квантовых точек

Квантовые точки, или полупроводниковые на...

Nature Nanotechnology: Идет создание упрощенной формы жизни
Nature Nanotechnology: Идет создание упрощенной формы жизни

Учёные много лет пытаются понять, как&nbs

LS&A: Разработан метод синтеза наночастиц высокоэнтропийных сплавов
LS&A: Разработан метод синтеза наночастиц высокоэнтропийных сплавов

Быстрое создание наночастиц высокоэнтропийных ...

Nano Letters: Тройные стыки — залог сохранения стабильности наноматериалов
Nano Letters: Тройные стыки — залог сохранения стабильности наноматериалов

Как создать материалы, которые будут прочнее и...

Nature Nanotechnology: Нанодиски для стимуляции мозга заменят инвазивные электроды
Nature Nanotechnology: Нанодиски для стимуляции мозга заменят инвазивные электроды

Новые магнитные нанодиски разработали учёные и...

LS&A: Разработан хиральный нанокомпозит для зондирования сероводорода
LS&A: Разработан хиральный нанокомпозит для зондирования сероводорода

С развитием нанотехнологий создано много искус...

ACS Nano: Открыты светопоглощающие свойства ахиральных материалов
ACS Nano: Открыты светопоглощающие свойства ахиральных материалов

Исследователи из Университета Оттавы сдел...

ACS Nano: Искусственный паучий шелк превратят в медицинские материалы
ACS Nano: Искусственный паучий шелк превратят в медицинские материалы

Скоро Хэллоуин, пора украшать дома страшными в...

AFM: Антибактериальные поверхности из графена уничтожат 99,9% патогенов
AFM: Антибактериальные поверхности из графена уничтожат 99,9% патогенов

Графен, обладающий сильными бактерицидными сво...

Physical Review Letters: Ученые подобрались ближе к искоренению наношума
Physical Review Letters: Ученые подобрались ближе к искоренению наношума

Благодаря наноразмерным устройствам исследоват...

ACS Nano: Новое открытие улучшит дизайн микроэлектронных устройств
ACS Nano: Новое открытие улучшит дизайн микроэлектронных устройств

Как работает электроника нового поколения и&nb...

В УГНТУ разработали установку по переработке печной сажи в графен
В УГНТУ разработали установку по переработке печной сажи в графен

Установку, которая перерабатывает печную сажу&...

Поиск на сайте

Знатоки клуба инноваций


ТОП - Новости мира, инновации

Внеклеточные везикулы — новое слово в лечении воспалительных заболеваний кишечника
Внеклеточные везикулы — новое слово в лечении воспалительных заболеваний кишечника
The American Journal of Human Genetics: Бесплодие может быть вызвано мутацией
The American Journal of Human Genetics: Бесплодие может быть вызвано мутацией
Surfaces and Interfaces: Куркума и серебро на мембранах стерилизуют вирусы
Surfaces and Interfaces: Куркума и серебро на мембранах стерилизуют вирусы
1 укол вместо 15: в Челябинске предложили революционный метод лечения рака
1 укол вместо 15: в Челябинске предложили революционный метод лечения рака
Ученые из Новосибирска установили возраст шерсти детеныша саблезубой кошки
Ученые из Новосибирска установили возраст шерсти детеныша саблезубой кошки
Исследована двойная роль клеточного регулятора CED-9 в апоптозе
Исследована двойная роль клеточного регулятора CED-9 в апоптозе
Челябинские ученые создали систему управления объектами электроэнергетики
Челябинские ученые создали систему управления объектами электроэнергетики
PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене
PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене
Frontiers in Physiology: Космонавты обычно немного «тормозят» из-за стресса
Frontiers in Physiology: Космонавты обычно немного «тормозят» из-за стресса
PF: Семена чампати помогут физикам лучше понять оползни и каменные лавины
PF: Семена чампати помогут физикам лучше понять оползни и каменные лавины
В Московском Политехе создали алгоритм для прогнозирования пешеходного трафика
В Московском Политехе создали алгоритм для прогнозирования пешеходного трафика
Ученые СПбГУ и Сколтеха открыли секрет появления цыпленка
Ученые СПбГУ и Сколтеха открыли секрет появления цыпленка
NF: Выравнивание спина для термоядерного топлива удешевит ядерную энергию
NF: Выравнивание спина для термоядерного топлива удешевит ядерную энергию
JACS: Открыт новый тип наночастиц гидрида палладия, которые запирают водород
JACS: Открыт новый тип наночастиц гидрида палладия, которые запирают водород
Ученые Пермского Политеха разработали новый способ печати стентов
Ученые Пермского Политеха разработали новый способ печати стентов

Новости компаний, релизы

3D-печать: от самых смелых концепций до твердой реальности
КНИТУ вошёл в тройку лидеров по количеству перспективных российских стартапов
В ПсковГУ состоялось открытие научно-образовательной лаборатории «Когнитивное развитие в образовании»
Квантовая неделя в Санкт-Петербурге пройдет на площадке СПбГУ
Пироговская олимпиада для школьников по химии и биологии