Температурные колебания преобразовали в чистую энергию с помощью наночастиц

Пироэлектрический катализ или пирокатализ позволяет преобразовывать колебания температуры окружающей среды в чистую химическую энергию, например, в водород.

Однако по сравнению с более распространенной стратегией катализа, такой как фотокатализ, пирокатализ неэффективен из-за медленного изменения температуры окружающей среды. Недавно группа под руководством исследователей из Городского университета Гонконга (CityU) запустила значительно более быструю и эффективную пирокаталитическую реакцию, используя локализованные плазменные источники тепла, чтобы быстро и эффективно нагреть пирокаталитический материал и дать ему остыть. Полученные результаты открывают новые возможности для эффективного катализа в биологических целях, для очистки среды от загрязнений и для получения чистой энергии.

Пирокатализ — это катализ, который вызывают поверхностные заряды в пироэлектрических материалах, возникающие при колебаниях температуры. Это экологически чистый метод катализа с автономным питанием, который использует отработанную тепловую энергию из окружающей среды. Он привлекает все большее внимание в сфере производства чистой энергии и генерации реактивных видов кислорода, которые в дальнейшем могут использоваться для дезинфекции.

Однако большинство имеющихся в настоящее время пироэлектрических материалов неэффективны, если температура окружающей среды не сильно меняется в течение долгого времени. Поскольку скорость изменения температуры окружающей среды часто ограничена, более эффективным способом повышения пирокаталитической эффективности является увеличение числа температурных циклов. Однако добиться многократного температурного цикла в пирокатализаторе в течение короткого промежутка времени с помощью обычных методов нагрева — большая проблема.

Проблема многократного термоциклирования

Исследовательская группа под руководством доктора Лэй Даньюань, доцента кафедры материаловедения и инженерии (MSE) CityU, недавно преодолела это препятствие, используя новую стратегию комбинирования пироэлектрических материалов и локализованного термоплазмонного эффекта наноматериалов благородных металлов.

Плазмонные наноструктуры, способствующие коллективному колебанию свободных электронов, могут поглощать свет и быстро преобразовывать его в тепло. Их наноразмер позволяет быстро, но эффективно изменять температуру в ограниченном объеме без значительных теплопотерь в окружающую среду. Следовательно, локализованное тепло, которое генерируют термоплазмонные наноструктуры, можно легко настраивать и включать или выключать внешним облучением светом в течение сверхкороткого промежутка времени.

Для своих экспериментов команда выбрала типичный пирокаталитический материал — наночастицы титаната бария (BaTiO3). Кораллообразные частицы BaTiO3 украшены наночастицами золота в качестве плазмонных источников тепла; наночастицы золота могут преобразовывать фотоны непосредственно от импульсного лазера в тепло. Результаты эксперимента показали, что наночастицы золота действуют как быстрый, динамичный и контролируемый локализованный источник тепла без повышения окружающей температуры, что значительно и эффективно увеличивает общую скорость пирокаталитической реакции наночастиц BaTiO3.

Золотые наночастицы в качестве локализованного источника тепла

Благодаря этой стратегии команда достигла высокой скорости пирокаталитической выработки водорода, что ускорило развитие практического применения пирокатализа. Плазмонные пироэлектрические нанореакторы показали высокую скорость пирокаталитической выработки водорода около 133,1±4,4 µmol·g-1·h-1 за счет термоплазмонного локального нагрева и охлаждения при облучении наносекундным лазером с длиной волны 532 нм.

Более того, частота повторения наносекундного лазера, использованного в эксперименте, составляла 10 Гц, а это означает, что в секунду на катализатор подавалось 10 световых импульсов для достижения 10 циклов нагрева и охлаждения. Из этого следует, что увеличение частоты повторения лазерных импульсов позволит в будущем повысить эффективность пироэлектрического катализатора.

Исследовательская группа считает, что результаты их эксперимента открыли новый подход для улучшения пирокатализа путем разработки инновационной пироэлектрической композитной системы с другими фототермическими материалами. Этот важный прогресс сделает применение пирокатализа в очистке загрязняющих веществ и производстве чистой энергии реалистичнее.

Результаты исследования опубликованы в престижном научном журнале Nature Communications.

11.01.2023


Подписаться в Telegram



Энергия

PRX Energy: Открыты перспективные материалы для термоядерных реакторов
PRX Energy: Открыты перспективные материалы для термоядерных реакторов

Ядерный синтез может стать идеальным решением ...

J. Mater. Chem. A: Литий-ионные батареи станут безопаснее и эффективнее
J. Mater. Chem. A: Литий-ионные батареи станут безопаснее и эффективнее

Новое объяснение эффекта этиленкарбоната ...

EPSR: ИИ повысит надежность электросетей с учетом роста энергопотребления
EPSR: ИИ повысит надежность электросетей с учетом роста энергопотребления

Из-за распространения возобновляемых источнико...

Matter: Гибридные перовскиты прокладывают путь к новым лазерам и светодиодам
Matter: Гибридные перовскиты прокладывают путь к новым лазерам и светодиодам

Исследователи разработали методику создания сл...

Nature Nanotechnology: Решена ключевая проблема натрий-ионных батарей
Nature Nanotechnology: Решена ключевая проблема натрий-ионных батарей

Литий-ионные батареи широко используются в&nbs...

JAC: Ученые исследовали эффективность пьезокатализа Bi2WO6-x
JAC: Ученые исследовали эффективность пьезокатализа Bi2WO6-x

Пьезокатализ — перспективная эколог...

EES Catalysis: Новые ячейки превращают углекислый газ в экологичное топливо
EES Catalysis: Новые ячейки превращают углекислый газ в экологичное топливо

Новый метод переработки бикарбонатного раствор...

Nature Climate Change: Богатые тоже пачкают атмосферу
Nature Climate Change: Богатые тоже пачкают атмосферу

Углеродный след богатых людей в обществе ...

Поиск на сайте

Знатоки клуба инноваций


ТОП - Новости мира, инновации

Nature Communications: Таяние льдов в Арктике ускорилось
Nature Communications: Таяние льдов в Арктике ускорилось
Новая карта Вселенной использует гравитационные волны для поиска черных дыр
Новая карта Вселенной использует гравитационные волны для поиска черных дыр
Environmental Archaeology: Древние агроэкосистемы спасут сельское хозяйство
Environmental Archaeology: Древние агроэкосистемы спасут сельское хозяйство
В СибГМУ снарядили против рака магнитные наночастицы
В СибГМУ снарядили против рака магнитные наночастицы
Nature E&E: Как рыбы-удильщики бросают вызов эволюционным ожиданиям
Nature E&E: Как рыбы-удильщики бросают вызов эволюционным ожиданиям
Как виртуальная модель нашей планеты может стать ключом к спасению человечества
Как виртуальная модель нашей планеты может стать ключом к спасению человечества
«Электронные татуировки» вместо ЭЭГ: новая технология позволит «читать мысли»
«Электронные татуировки» вместо ЭЭГ: новая технология позволит «читать мысли»
Изобретение МИСИС может изменить жизнь людей с травмами спинного мозга
Изобретение МИСИС может изменить жизнь людей с травмами спинного мозга
CMAJ: Скрининг на рак легких помогает обнаружить проблемы с сердцем
CMAJ: Скрининг на рак легких помогает обнаружить проблемы с сердцем
Хаббл нашел звездные ясли в 38 млн световых лет от Земли
Хаббл нашел звездные ясли в 38 млн световых лет от Земли
NatElec: Найден способ менять форму полупроводников: как это изменит электронику
NatElec: Найден способ менять форму полупроводников: как это изменит электронику
Древнее послание из прошлого: что скрывает тайная надпись, найденная на Кипре
Древнее послание из прошлого: что скрывает тайная надпись, найденная на Кипре
Как суслики выживают без воды и еды 6–8 месяцев: ученые раскрыли секрет спячки
Как суслики выживают без воды и еды 6–8 месяцев: ученые раскрыли секрет спячки
Как наши предки научились ходить на двух ногах — раскрыт секрет прямохождения
Как наши предки научились ходить на двух ногах — раскрыт секрет прямохождения
Science: Разработан деградирующий белок для трудноизлечимого рака
Science: Разработан деградирующий белок для трудноизлечимого рака

Новости компаний, релизы

Благодаря нацпроекту участники Фестиваля Наука 0+ посетили Центр вирусологии «Вектор»
Ученые Пермского Политеха выяснили, как повысить скорость и качество обработки новых титановых сплавов
Ученые ПНИПУ повысили точность оценки состояния авиадвигателя с помощью ИИ
Набережночелнинский педагогический университет подписал ряд соглашений с университетами Туниса
Дагестан на научной карте России – новый маршрут «Махачкала научная»