Органическая электроника — область, которая вызывает значительный интерес в научных и промышленных кругах благодаря потенциальному применению в OLED и органических солнечных батареях, обладающих такими преимуществами, как легкость конструкции, гибкость и экономичность. Эти устройства создаются путем нанесения тонкой пленки органических молекул на подложку, которая выступает в качестве электрода, и функционируют за счет управления переносом электронов между тонкой пленкой и подложкой. Поэтому понимание поведения электронов на границе раздела подложки и тонкой пленки в сочетании с электронными свойствами органической тонкой пленки имеет решающее значение для дальнейшего развития органической электроники. Более того, одновременное наблюдение электронов фотоносителя и внутримолекулярного фотовозбуждения позволит лучше понять тонкие пленки органических молекул. Хотя статические электронные состояния тонких пленок органических молекул были детально изучены с помощью техники, называемой фотоэлектронной спектроскопией, точное определение динамического поведения электронов, пытающихся выразить свои функции в устройствах, было сложной задачей, препятствующей прогрессу. Исследовательская группа под руководством доцента Масахиро Шибута из Высшей школы инженерии Университета Осака Метрополитен наблюдала за электронным поведением и структурой поверхности тонкой пленки молекул трифенилена (TP), нанесенной на графитовую подложку с помощью двухфотонной фотоэмиссионной (2PPE) спектроскопии, сканирующей туннельной микроскопии и дифракции низкоэнергетических электронов. Результаты показали, что молекулы TP имеют особую структуру, в которой они адсорбируются на подложке в стоячей конфигурации. При облучении светом молекулы TP инжектировали электроны из подложки, и электроны, фотовозбужденные в молекулярной тонкой пленке, успешно наблюдались одновременно в одном образце. Кроме того, сильная фотолюминесценция наблюдалась на тонкой пленке с одним слоем молекул в специальной структуре, где молекулы были адсорбированы на подложке по диагонали, как в случае молекул TP. Ожидается, что эти результаты будут способствовать разработке новых люминесцентных материалов и дальнейшему развитию функциональных органических электронных устройств.
Результаты исследования опубликованы в журнале The Journal of Physical Chemistry C. 19.03.2024 |
Хайтек
На СКИФе в Новосибирской области получили первый пучок электронов | |
В наукограде Кольцово, недалеко от Новоси... |
LS&A: Разработаны новые органические материалы для инфракрасных фотоприемников | |
Органические инфракрасные фотоприемники сталки... |
В POSTECH приблизили будущее с растягивающейся электроникой | |
Исследователи POSTECH создали новую технологию... |
В ННГУ создали импортозамещающую установку для альтернативных источников газа | |
Устройство для изучения процесса образова... |
В МИФИ разработали робота-официанта и уже заинтересовали общепит и супермаркет | |
Команда студентов Национального исследовательс... |
В МГУ открыли неожиданную трансформацию диоксида церия в фосфатных растворах | |
Ученые из МГУ, Института общей и нео... |
В МГУ моделируют свойства оксида магния в разных фазовых состояниях | |
Сотрудники кафедры физической химии химическог... |
В ТПУ создали сенсор для поиска пестицидов в 10 раз чувствительнее аналогов | |
Ученые из Томского политехнического униве... |
Устройство из специального стекла увеличит передачу данных в несколько раз | |
Ученые из Москвы и Нижнего Новгорода... |
Открыты новые материалы для производства передовых компьютерных чипов | |
Инженерам нужны новые материалы, чтобы сделать... |
В САФУ создали первую в мире компактную модель широкодиапазонного датчика тока | |
Датчик, который может измерять большие и ... |
Physical Review D: Большой адронный коллайдер регулярно творит волшебство | |
Исследовательский дуэт обнаружил, что ког... |
Искусственный нейрон на базе лазера молниеносно имитирует функции нервных клеток | |
Исследователи разработали искусственный нейрон... |
Студенты изобрели охлаждающее устройство, которое крепится к строительной каске | |
Летом после первого года обучения архитектуре ... |
Ученые МИФИ создали прибор, увеличивающий эффективность химических реакций | |
Сотрудники научного центра Нано-Фотон Инженерн... |
В ТПУ собрали уникальный рентгеновский микроскоп X-ray eye для СКИФа | |
Ученые Томского политехнического университета ... |
Магнитные поля открывают новое проявление эффекта Холла в современных материалах | |
Внутриплоскостные магнитные поля ответственны ... |
Nature Communications: Открыт новый способ отделения кислорода от аргона | |
Эффективное разделение газов играет важную рол... |
Эксперт НИЯУ МИФИ прокомментировал запуск ускорителя СКИФа | |
В наукограде Кольцово под Новосибирском з... |
В СПбГУ создали спектрофотометр на основе напечатанной люминесцирующей кюветы | |
Ученые из Санкт-Петербурга создали неболь... |
PRX Quantum: Как атомы в оптической полости взаимодействуют со светом | |
Изолированные атомы в свободном пространс... |
Прорыв в 3D-печати: как создают легкие и прочные автомобильные детали будущего | |
Исследователи из Института исследования м... |
Нанохранение данных: новый полимер записывает информацию в виде вмятин | |
Новый материал для хранения данных высоко... |
Лазерный прорыв: как фемтосекундные импульсы изменят мир пучков электронов | |
Новый способ управления пучком релятивистских ... |
Пленка на основе металлоорганического каркаса улучшает разделение изомеров | |
Исследователи разработали метод, позволяющий у... |
Научные прорывы в области физики в 2024 году | |
Физика — это наука, которая из... |
В ЮУрГУ и МГУ создают сверхчувствительный сенсор на квантовых принципах | |
В лаборатории квантовой инженерии света Южно-У... |
Святой Грааль биологии: как ИИ поможет создать виртуальную клетку | |
Последние достижения в области искусствен... |
Scientific Reports: Технологии сверхточных лазерных измерений станут компактными | |
Для экспериментов, требующих сверхточных измер... |
Engineering: Разработано супергидрофобное покрытие для защиты труб от коррозии | |
Долгосрочные проблемы эрозии и коррозии, ... |