Группа исследователей из Нью-Йоркского университета создала новый способ визуализации кристаллов, позволяющий заглянуть внутрь их структуры, что роднит разработку с рентгеновским зрением. Новая методика, которую они назвали Crystal Clear, сочетает в себе использование прозрачных частиц и микроскопов с лазерами, которые позволяют ученым видеть каждую единицу, составляющую кристалл, и создавать динамические трехмерные модели.
Атомные кристаллы — это твердые материалы, строительные блоки которых расположены повторяющимся, упорядоченным образом. Время от времени какой-нибудь атом отсутствует или находится не на своем месте, в результате чего образуется дефект. Именно расположение атомов и дефектов создает различные кристаллические материалы — от поваренной соли до алмазов — и придает им свойства. Для изучения кристаллов многие ученые, в том числе и Саканна, используют не атомы, а кристаллы, состоящие из мельчайших сфер, называемых коллоидными частицами. Коллоидные частицы крошечные — часто около микрометра в диаметре, или в десятки раз меньше человеческого волоса, — но они гораздо крупнее атомов, и поэтому их легче увидеть под микроскопом. Прозрачная структураВ ходе своей работы над пониманием того, как образуются коллоидные кристаллы, исследователи осознали необходимость видеть внутренности этих структур. Под руководством Шихао Цанга, аспиранта из лаборатории Саканны и первого автора исследования, команда задалась целью создать метод визуализации строительных блоков внутри кристалла. Сначала они разработали прозрачные коллоидные частицы и добавили к ним молекулы красителя, что позволило различить каждую частицу под микроскопом с помощью их флуоресценции. Микроскоп не позволил бы исследователям заглянуть внутрь кристалла, поэтому они обратились к технике визуализации под названием конфокальная микроскопия, которая использует лазерный луч, сканирующий материал, чтобы вызвать направленную флуоресценцию молекул красителя. Это позволяет выявить каждую двухмерную плоскость кристалла, которые можно сложить друг на друга, чтобы построить трехмерную цифровую модель и определить местоположение каждой частицы. Модели можно вращать, нарезать и разбирать на части, чтобы заглянуть внутрь кристаллов и увидеть любые дефекты. В одном из экспериментов исследователи использовали этот метод визуализации на кристаллах, которые образуются, когда два кристалла одного типа растут вместе — явление, известное как «задваивание». Заглянув внутрь моделей кристаллов, по структуре напоминающих поваренную соль или сплав меди и золота, они увидели общую плоскость примыкающих друг к другу кристаллов — дефект, который приводит к появлению этих особых форм. Эта общая плоскость раскрыла молекулярное происхождение задваивания. Кристаллы в движенииНовая техника позволяет ученым не только наблюдать за статичными кристаллами, но и визуализировать их в процессе изменения. Например, что происходит, когда кристаллы плавятся — перестраиваются ли частицы, перемещаются ли дефекты? В эксперименте, в котором исследователи расплавили кристалл со структурой минеральной соли хлорида цезия, они с удивлением обнаружили, что дефекты были стабильны и не перемещались, как ожидалось. Чтобы подтвердить правильность своих экспериментов со статическими и динамическими кристаллами, команда также использовала компьютерное моделирование для создания кристаллов с теми же характеристиками, подтвердив, что их метод Crystal Clear точно передает то, что находится внутри кристаллов.
Теперь, когда у ученых есть метод визуализации внутренней части кристаллов, они могут с большей легкостью изучать их химическую историю и процесс формирования, что может проложить путь к созданию более совершенных кристаллов и разработке фотонных материалов, взаимодействующих со светом.
03.06.2024 |
Хайтек
Physical Review Letters: Разгадана тайна механизма выброса рентгеновских лучей | |
С 1960-х годов ученые, которые изучают рентген... |
«Электронные татуировки» вместо ЭЭГ: новая технология позволит «читать мысли» | |
Стандартные тесты электроэнцефалографии и... |
NatElec: Найден способ менять форму полупроводников: как это изменит электронику | |
Инженеры научились управлять изменениями формы... |
IEEE Access: Устройства смогут считывать человеческие эмоции без камеры | |
Ученые из Токийского столичного университ... |
В СПбГУ заставили катализаторы на основе платины перерабатывать зеленый свет | |
Новые вещества на основе платины создали ... |
В ПНИПУ нашли эффективное средство для очистки газотурбинного двигателя | |
Лопатки газотурбинного двигателя постоянно под... |
PNAS: Ученые объяснили, как твердые материалы становятся текучими | |
При каких условиях хлюпающие зерна могут вести... |
В МИФИ создан комплекс для проверки точности аппаратов МРТ | |
Магнитно-резонансная томография, или МРТ,... |
В ИТМО выяснили, как динамические системы переходят к хаосу | |
В Университете ИТМО ученые объяснили, как ... |
Applied Physics Express: Изобретен компактный лазер для дезинфекции | |
Первый в мире компактный синий полупровод... |
Ученые ЮУрГУ создают ковалентные каркасы — новый материал для оптики | |
Новые вещества под названием ковалентные ... |
Нагреватель будущего: как разработка студента МФТИ изменит наноэлектронику | |
Студент магистратуры Московского физико-технич... |
Выяснилось, что композиты с древесиной лучше выдерживают высокие температуры | |
Ученые из Российского экономического унив... |
Излучение 5G меняет ткани мозга крыс, но решать, плохо это или хорошо, пока рано | |
Ученые ТГУ провели эксперимент и про... |
Робот с винтовым двигателем сможет добывать полезные ископаемые на Луне | |
Экспериментальный робот показал, что може... |
Ученые создали элементы системы управления синхротронным пучком для СКИФа | |
Сотрудники университета и ученые из ... |
PNAS: Создан реактор для безопасной добычи лития из соляных растворов | |
Новое устройство, которое позволяет добывать л... |
Nature: Ученые исследуют строение ядер химических элементов с помощью лазеров | |
Группа ученых из разных стран попыталась ... |
Nature Nanotechnology: Новый материал охлаждает на 72% лучше любых термопаст | |
В местах, где хранятся и обрабатываю... |
NatComm: Учёные приблизились к созданию биополимеров, реагирующих на воду | |
Новый подход для понимания и предска... |
В Челябинске разрабатывают инновационное оборудование для вибрационных испытаний | |
Специалисты ЮУрГУ совместно с Уральским и... |
В ТПУ создали многоразовые накопители водорода из отечественного сырья | |
Более дешевые металлогидридные накопители водо... |
Новый подход к производству цифрового света решает проблемы 3D-печати | |
Новый метод производства цифрового света для&n... |
AEM: Гибридный полупроводник позволит лучше понять спинтронику | |
Электроны вращаются без электрического за... |
Томские ученые представили цифровое решение для оптимизации НПЗ | |
Новый программный комплекс представили ученые ... |
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью | |
Методику создания синтетических данных для&nbs... |
Численное моделирование повысит эффективность 3D-печати из стали 316LSi | |
Морская нержавейка, или сталь 316LSi, шир... |
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей | |
Новый сплав на основе алюминия создали ис... |
В НГУ разработали первые фильтры для технологии связи 6G | |
Уникальные фильтры для импульсной терагер... |
Nat. Nanotechnol: Разработан самоочищающийся электрод для синтеза пероксидов | |
Пероксиды металлов — MO₂, M=Ca, Sr,... |