Учёные из Массачусетского технологического института и Университета штата Юта разработали новый материал для гибких подложек. Он позволит не только перерабатывать электронные отходы, но и создавать более сложные многослойные схемы. Это особенно актуально в связи с ростом производства гибкой электроники. Результаты опубликованы в журнале RSC: Applied Polymers. Статья создана в соавторстве профессора Массачусетского технологического института Томаса Дж. Уоллина, профессора Университета Юты Чена Ванга и семи других авторов. Доцент кафедры материаловедения и инженерии Массачусетского технологического института Уоллин отмечает, что электронные отходы — это глобальный кризис, который будет усугубляться. Причина — в постоянном создании новых устройств для интернета вещей и развитии остального мира. Сейчас большая часть исследований в этой области направлена на разработку альтернатив традиционным подложкам для гибкой электроники. В них используется полимер под названием каптон (kapton), или полиимид.
Каптон имеет много преимуществ, включая хорошие тепло- и изоляционные свойства и доступность сырья. По прогнозам, к 2030 году мировой рынок полиимидов достигнет 4 миллиарда долларов. Полиимид есть практически в каждом электронном устройстве — например, в гибких кабелях мобильных телефонов и ноутбуков, рассказывает Ванг. Этот материал также широко применяется в аэрокосмической отрасли благодаря своей термостойкости.
Расплавить или растворить каптон практически невозможно, поэтому его нельзя переработать. Из-за этого свойства каптона также сложно изготавливать многослойные электронные схемы. Традиционно каптон нагревают до 200–300 градусов Цельсия, но это долгий процесс, который занимает несколько часов. Разработанный командой материал — разновидность полиимида, поэтому он совместим с существующей производственной инфраструктурой. Это светоотверждаемый полимер, подобный тем, которые стоматологи используют для создания пломб. Затвердевание происходит за несколько секунд под воздействием ультрафиолетового света. Метод отверждения быстрый и может работать при комнатной температуре. Новый материал может служить подложкой для многослойных схем. Это позволяет увеличить количество компонентов, которые помещаются в небольшом корпусе. Ранее слои приходилось склеивать, потому что каптоновая подложка не плавится. Из-за этого увеличивалось количество этапов и стоимость процесса. По словам Ванга, новый материал можно обрабатывать при низких температурах. При этом он быстро затвердевает по требованию. Это может открыть новые возможности для создания многослойных устройств. Команда внедрила в полимер субъединицы, которые можно быстро растворить в растворе спирта и катализатора. Из раствора можно извлечь драгоценные металлы и микрочипы, чтобы использовать их повторно.
06.08.2024 |
Хайтек
«Электронные татуировки» вместо ЭЭГ: новая технология позволит «читать мысли» | |
Стандартные тесты электроэнцефалографии и... |
NatElec: Найден способ менять форму полупроводников: как это изменит электронику | |
Инженеры научились управлять изменениями формы... |
IEEE Access: Устройства смогут считывать человеческие эмоции без камеры | |
Ученые из Токийского столичного университ... |
В СПбГУ заставили катализаторы на основе платины перерабатывать зеленый свет | |
Новые вещества на основе платины создали ... |
В ПНИПУ нашли эффективное средство для очистки газотурбинного двигателя | |
Лопатки газотурбинного двигателя постоянно под... |
PNAS: Ученые объяснили, как твердые материалы становятся текучими | |
При каких условиях хлюпающие зерна могут вести... |
В МИФИ создан комплекс для проверки точности аппаратов МРТ | |
Магнитно-резонансная томография, или МРТ,... |
В ИТМО выяснили, как динамические системы переходят к хаосу | |
В Университете ИТМО ученые объяснили, как ... |
Applied Physics Express: Изобретен компактный лазер для дезинфекции | |
Первый в мире компактный синий полупровод... |
Ученые ЮУрГУ создают ковалентные каркасы — новый материал для оптики | |
Новые вещества под названием ковалентные ... |
Нагреватель будущего: как разработка студента МФТИ изменит наноэлектронику | |
Студент магистратуры Московского физико-технич... |
Выяснилось, что композиты с древесиной лучше выдерживают высокие температуры | |
Ученые из Российского экономического унив... |
Излучение 5G меняет ткани мозга крыс, но решать, плохо это или хорошо, пока рано | |
Ученые ТГУ провели эксперимент и про... |
Робот с винтовым двигателем сможет добывать полезные ископаемые на Луне | |
Экспериментальный робот показал, что може... |
Ученые создали элементы системы управления синхротронным пучком для СКИФа | |
Сотрудники университета и ученые из ... |
PNAS: Создан реактор для безопасной добычи лития из соляных растворов | |
Новое устройство, которое позволяет добывать л... |
Nature: Ученые исследуют строение ядер химических элементов с помощью лазеров | |
Группа ученых из разных стран попыталась ... |
Nature Nanotechnology: Новый материал охлаждает на 72% лучше любых термопаст | |
В местах, где хранятся и обрабатываю... |
NatComm: Учёные приблизились к созданию биополимеров, реагирующих на воду | |
Новый подход для понимания и предска... |
В Челябинске разрабатывают инновационное оборудование для вибрационных испытаний | |
Специалисты ЮУрГУ совместно с Уральским и... |
В ТПУ создали многоразовые накопители водорода из отечественного сырья | |
Более дешевые металлогидридные накопители водо... |
Новый подход к производству цифрового света решает проблемы 3D-печати | |
Новый метод производства цифрового света для&n... |
AEM: Гибридный полупроводник позволит лучше понять спинтронику | |
Электроны вращаются без электрического за... |
Томские ученые представили цифровое решение для оптимизации НПЗ | |
Новый программный комплекс представили ученые ... |
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью | |
Методику создания синтетических данных для&nbs... |
Численное моделирование повысит эффективность 3D-печати из стали 316LSi | |
Морская нержавейка, или сталь 316LSi, шир... |
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей | |
Новый сплав на основе алюминия создали ис... |
В НГУ разработали первые фильтры для технологии связи 6G | |
Уникальные фильтры для импульсной терагер... |
Nat. Nanotechnol: Разработан самоочищающийся электрод для синтеза пероксидов | |
Пероксиды металлов — MO₂, M=Ca, Sr,... |
В СПбГУ создали новые биоактивные молекулы с помощью золотого катализатора | |
Метод соединения двух простых веществ с п... |