В журнале Physical Review Letters опубликовали исследование о влиянии сверхлёгкой тёмной материи в EMRI, — аббревиатура означает экстремальное отношение масс. Подобные объекты смогут обнаружить будущие космические детекторы гравитационных волн, такие как LISA. Учёные исследуют разные подходы к обнаружению тёмной материи, так как существует много её предполагаемых форм. Цель исследования — понять, как взаимодействует сверхлёгкая тёмная материя с системами, состоящими из сверхмассивной чёрной дыры (SMBH) и меньшего астрономического тела (звезды или другой чёрной дыры). Вращение меньшего объекта по спирали может генерировать гравитационные волны, которые помогут изучить поведение сверхлёгкой тёмной материи в этих системах. Доктор Франциско Дуке, постдокторант Института гравитационной физики Макса Планка и первый автор работы, рассказал о причинах, побудивших команду провести исследование. По его словам, одна из главных нерешенных проблем современной физики — понимание фундаментальной природы темной материи.
Сверхлегкая темная материяСверхлёгкая тёмная материя состоит из частиц, которые не имеют собственного вращения и равномерно распределены в пространстве. Частицы этого типа тёмной материи могут быть легче электрона в 1028 раз. Они демонстрируют волнообразное поведение на больших масштабах из-за своей малой массы. На малых масштабах они могут влиять на галактические структуры. Бозонные облака образуются вокруг вращающихся чёрных дыр. Они используют энергию чёрной дыры и увеличиваются в размерах, рассеивая её, а не позволяя поглощать. Это явление называется сверхизлучением. Если одна из форм сверхлёгкой тёмной материи существует в EMRI, она может влиять на гравитационные волны, исходящие от этих систем. Релятивистский подходПредыдущие исследования влияния окружающей среды на EMRI основывались на приближении Ньютона. Но в условиях экстремальных гравитаций или высоких скоростей, близких к скорости света, необходимо учитывать релятивистские эффекты. Поэтому исследовательская группа использовала полностью релятивистскую систему для изучения среды вокруг EMRI. Они хотели исследовать энергию, теряемую в EMRI из-за гравитационных волн и истощения скалярного поля при взаимодействии с бинарной системой. Доктор Родриго Висенте, исследователь из Института физики высоких энергий в Барселоне и соавтор исследования, объяснил свои выводы:
LISA и будущие обнаруженияБудущие детекторы, такие как LISA, смогут обнаружить сдвиг в сигналах гравитационных волн, вызванный сверхлегкой темной материей. LISA запустят в 2035 году. Он будет чувствителен к миллигерцовым частотам и сможет наблюдать EMRI с высокой точностью. LISA сможет отслеживать эти системы в течение долгого времени, что позволит ему наблюдать сдвиг фаз, вызванный динамическим трением. Однако если подобные эффекты не будут замечены, данные LISA можно будет использовать для наложения жестких ограничений на существование сверхлегких полей в широком диапазоне масс. За пределами темной материиИсследователи изучили, как ведут себя нечеткая темная материя и бозонные облака. Они выяснили, что при большом расстоянии между объектом и сверхмассивной черной дырой (SMBH) потери энергии из-за истощения скалярного поля нечеткой темной материи могут быть больше потерь от излучения гравитационных волн. Также ученые обнаружили резонансное поведение гравитационных волн — релятивистский эффект, которого нет в ньютоновских моделях. Исследователи обнаружили, что рассеяние энергии через скалярное истощение чувствительно к свойствам окружающей среды для бозонных облаков. Более точная модель того, как различные типы материи влияют на гравитационные волны, может значительно продвинуть наше понимание гравитации и открыть путь для изучения тёмной материи. В будущей работе исследователи планируют расширить свою схему для учёта эксцентричных орбит, которые часто встречаются в EMRI. Они хотят адаптировать свою схему к дискам активных галактических ядер (AGN), которые содержат много тёмной материи. А это исследование поможет лучше понять роль тёмной материи во Вселенной. Иллюстрация: нейросеть 21.10.2024 |
Космос
Frontiers in Physiology: Космонавты обычно немного «тормозят» из-за стресса | |
Когда человек находится в космосе, его&nb... |
Phys.org: Ученые обнаружили 719 новых галактик в Великом аттракторе | |
В космосе есть место, куда астрономы не р... |
Phys.org: Космический мусор защитит будущие миссии на Луну и Марс от радиации | |
Вы, возможно, не знали, но космонавт... |
Nature Astronomy: Красные карлики тоже обогащают Вселенную | |
Астрономы могут заглянуть в прошлое, набл... |
В ЮФУ предложили новую модель компактных звезд | |
Новую модель компактных звезд предложили учены... |
Astronomy & Astrophysics: Астрофизики измерили поведение частиц в килоновой | |
После столкновения двух нейтронных звезд и&nbs... |
Наноспутник будет искать нефтяные пятна и предсказывать лесные пожары | |
Два космических аппарата Самарского университе... |
НАСА представило прототип телескопа для обсерватории гравитационных волн | |
НАСА представило прототип шести телескопов, ко... |
PRL: Изучено влияние сверхлегкой темной материи на сигналы гравитационных волн | |
В журнале Physical Review Letters опубликовали... |
В АмГУ разработали модуль для российско-белорусского спутника | |
Проект инженеров Амурского госуниверситета поб... |
Planetary Science Journal: Большое красное пятно Юпитера меняется в размерах | |
С помощью телескопа Хаббл астрономы наблюдали ... |
DPS56: На экзопланеты полезно взглянуть под другим углом | |
Астрономы сравнили чёткие снимки Урана от ... |
SciAdv: Примитивные астероиды принесли на Землю львиную долю летучих элементов | |
Исследователи изучили химический состав цинка ... |
Nature Astronomy: Найдено свидетельство внутреннего роста в ранней Вселенной | |
С помощью космического телескопа James Webb Sp... |
MNRAS: Открыта самая удаленная вращающаяся дисковая галактика | |
С помощью телескопа ALMA ученые обнаружили отд... |
Nature Astronomy: Открытие помогает понять, как возникла Солнечная система | |
Астрономы обнаружили новые детали газовых пото... |
JC&AP: Следы антивещества в космических лучах возвращают к теме ВИМПов | |
Одна из главных задач современной космоло... |
Science: Ученые создают глобальные карты коронального магнитного поля | |
Учёные впервые проводили практически ежедневны... |
Ученые напрасно игнорировали звезды F-типа, вокруг которых тоже может быть жизнь | |
Возможно, за пределами Земли есть планеты... |
A&A: Ученые обнаружили планету на орбите ближайшей к нашему Солнцу звезды | |
С помощью Очень большого телескопа Европейской... |
Nature Astronomy: Поверхность Цереры состоит изо льда более чем на 90% | |
С 1801 года, когда Джузеппе Пиацци открыл перв... |
Составлена карта гравитационных «бассейнов притяжения» в локальной Вселенной | |
Группа международных исследователей во гл... |
Nature Astronomy: В космосе нашли пример того, что будет с Землей и Солнцем | |
Похожую на Землю планету, которая находит... |
Science Advances: Возможно, в глине Марса хранится часть атмосферы | |
Марс не всегда был холодной пустыней... |
MNRAS: Обнаружена необычная галактика, в которой газ светит ярче звезд | |
Открытие необычной галактики GS-NDG-9422 может... |
Выпускник МАИ создал облачный сервис для обработки космических снимков | |
Компания SR Data, резидент инновационного цент... |
Journal of Neurochemistry: Космические лучи нарушают когнитивную активность | |
Радиация из космоса может быть опасна для... |
Nature Astronomy: Астрономы разглядели уникальную асимметричную экзопланету | |
С помощью космического телескопа Джеймс Уэбб а... |
AJL: В лаборатории можно создать индикаторы жизни на других планетах | |
Один из способов понять, есть ли жиз... |
PNAS: Низкая гравитация в космосе ослабляет сердце и нарушает сердцебиение | |
30 дней держали 48 образцов биоинженерной серд... |