Это похоже на волшебство: фотоэлектроды могут превращать парниковый газ CO2 обратно в метанол или молекулы N2 в ценное удобрение, используя только энергию солнечного света. Исследование HZB показало, что алмазные материалы в принципе пригодны для создания таких фотоэлектродов. Сочетая рентгеновские спектроскопические методы в BESSY II с другими методами измерений, команде Тристана Пети впервые удалось точно отследить, какие процессы возбуждаются под действием света, а также определить решающую роль поверхности алмазных материалов. На первый взгляд, выращенные в лаборатории алмазные материалы имеют мало общего со своими тезками в ювелирном магазине. Они часто непрозрачны, темны и выглядят совсем не эффектно. Но даже если их внешний вид не впечатляет, они перспективны для самых разных применений, например, в имплантатах мозга, квантовых датчиках и компьютерах, а также в качестве безметалловых фотоэлектродов в фотоэлектрохимическом преобразовании энергии. Они полностью экологичны, состоят только из углерода, мало деградируют со временем по сравнению с фотоэлектродами на основе металлов и могут производиться промышленным способом! Алмазные материалы подходят для использования в качестве безметалловых фотоэлектродов, поскольку при возбуждении светом они могут высвобождать электроны в воде и запускать химические реакции, которые трудно инициировать иным способом. В качестве конкретного примера можно привести восстановление CO2 до метанола, превращающего парниковый газ в ценное топливо. Также интересно было бы использовать алмазные материалы для превращения N2 в азотное удобрение NH3, затрачивая при этом гораздо меньше энергии, чем в процессе Хабера-Боша. Однако алмазные электроды окисляются в воде, а окисленные поверхности, как предполагалось, уже не излучают электроны в воду. Кроме того, полоса пропускания алмаза находится в УФ-диапазоне (при 5,5 эВ), поэтому видимого света вряд ли будет достаточно для возбуждения электронов. Несмотря на это ожидание, предыдущие исследования показали загадочную эмиссию электронов при возбуждении видимым светом. Новое исследование, проведенное группой д-ра Тристана Пети в HZB, позволяет сделать новые выводы и вселяет надежду. Доктор Арсен Шемин (Arsène Chemin), постдокторант из группы Пети, изучал образцы алмазных материалов, изготовленных в Институте прикладной физики твердого тела Фраунгофера во Фрайбурге. Образцы были сконструированы таким образом, чтобы облегчить реакцию восстановления CO2: легированы бором для обеспечения хорошей электропроводности и наноструктурированы, что дает им огромную поверхность для увеличения эмиссии носителей заряда, таких как электроны. Шемин использовал четыре метода рентгеновской спектроскопии в BESSY II для определения характеристик поверхности образца и энергии, необходимой для возбуждения определенных электронных состояний поверхности. Затем он использовал поверхностное фотонапряжение, измеренное в специализированной лаборатории в HZB, чтобы определить, какие из этих состояний возбуждаются и как перемещаются носители заряда в образцах. В дополнение к этому он измерил фотоэмиссию электронов из образцов, находящихся в воздухе или в жидкости. Объединив эти результаты, он впервые смог составить полную картину процессов, происходящих на поверхности образца после возбуждения светом.
«Эти результаты вселяют оптимизм», — говорит Шемин: „Благодаря алмазным материалам мы получили новый класс материалов, которые можно исследовать и широко использовать“. Более того, интересна и сама методология этого исследования: Сочетание этих различных спектроскопических методов может привести к новым открытиям и в других фотоактивных полупроводниковых материалах, указывает физик. 21.09.2023 |
Хайтек
AEM: Гибридный полупроводник позволит лучше понять спинтронику | |
Электроны вращаются без электрического за... |
Томские ученые представили цифровое решение для оптимизации НПЗ | |
Новый программный комплекс представили ученые ... |
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью | |
Методику создания синтетических данных для&nbs... |
Численное моделирование повысит эффективность 3D-печати из стали 316LSi | |
Морская нержавейка, или сталь 316LSi, шир... |
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей | |
Новый сплав на основе алюминия создали ис... |
В НГУ разработали первые фильтры для технологии связи 6G | |
Уникальные фильтры для импульсной терагер... |
Nat. Nanotechnol: Разработан самоочищающийся электрод для синтеза пероксидов | |
Пероксиды металлов — MO₂, M=Ca, Sr,... |
В СПбГУ создали новые биоактивные молекулы с помощью золотого катализатора | |
Метод соединения двух простых веществ с п... |
AFM: Разработан материал для поглощения электромагнитных волн широкого спектра | |
Ультратонкий пленочный композитный материал, с... |
PRL: Доказана возможность открытия новых сверхтяжелых элементов | |
Уран — самый тяжелый из извест... |
NE: Новый жидкостный акустический датчик распознаёт голоса в шумной обстановке | |
Инженеры разработали множество сложных датчико... |
Science: Новый метод спектроскопии раскрывает квантовые секреты воды | |
Вода — это жизнь. Но водо... |
В ИРНИТУ создали первую партию инклинометров и объединили их в умную сеть | |
Сотрудники Центра маркшейдерских и геодез... |
Ученые УУНиТ создали первый отечественный станок для сухого электрополирования | |
Ученые Уфимского университета науки и тех... |
Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет | |
Физическая модель, которая описывает взаимодей... |
Новый метод синтеза лекарств открыли российские химики | |
Новый метод синтеза производных пирролизидина ... |
Advanced Materials: Созданы волокна в одежду для питания смартфона от тепла тела | |
Термоэлектрический материал, который можно исп... |
Ultrafast Science: Ученые успешно ускорили идентификацию молекул лазером | |
В 100 раз ускорили измерения спектроскопи... |
В УрФУ разработали технологию 3D-печати из жаропрочных титановых сплавов | |
Технологию создания жаропрочных сплавов на&nbs... |
Ученые ЮУрГУ предложили уникальную технологию повышения надежности сварки | |
Уникальную технологию повышения надежности сва... |
В Томском университете создали интегральные схемы для российских РЛС | |
Первый российский комплект интегральных схем д... |
Российские ученые приблизились к созданию искусственной сетчатки | |
Оптоэлектронный синапс — мемристор ... |
Экологичная замена полиэтиленовым упаковкам разработана в МГУ | |
Биоразлагаемый полимер — полипропил... |
CS: Создана технология производства компонентов для шампуней и лекарств | |
Исследователи из России и Китая разр... |
APN: Фотонные вычисления помогут продвинуться в области аналоговых вычислений | |
Дифференциальные уравнения с частными про... |
Ученые НИТУ МИСИС разработали магнитные микропровода для имплантатов и датчиков | |
Новые ультратонкие аморфные микропровода, кото... |
NP: Открыт новый метод, предлагающий решения для сложных задач визуализации | |
Новый метод вычислительной голографии позволяе... |
В Пермском Политехе усовершенствовали алгоритм оценки состояния оборудования | |
Для оценки состояния оборудования или все... |
NP: Создана фотонная решетка, способная манипулировать квантовыми состояниями | |
Синтетическую фотонную решетку, которая может ... |
Physical Review C: Синтезирован новый изотоп плутония | |
Физики из Китая выяснили, что период... |