Если ее будут изготавливать из новой керамики. Дело в том, что исследователи обнаружили способ сделать керамику более прочной и устойчивой к растрескиванию. Создавая эти материалы с использованием смеси атомов металлов, имеющих больше электронов на внешней оболочке, группа специалистов под руководством инженеров из Калифорнийского университета в Сан-Диего раскрыла потенциал, позволяющий керамике выдерживать более высокие нагрузки и напряжения, чем раньше. Керамика обладает множеством преимуществ благодаря своим замечательным свойствам, включая способность выдерживать экстремально высокие температуры, противостоять коррозии и износу поверхности, а также сохранять легкий вес. Эти свойства делают их пригодными для использования в различных областях, таких как аэрокосмические компоненты и защитные покрытия для двигателей и режущих инструментов. Однако их слабым местом всегда была хрупкость. Они легко ломаются под нагрузкой. Но теперь исследователи нашли решение, которое позволяет сделать керамику более прочной. Результаты своей работы ученые опубликовали в журнале Science Advances. Исследование, проведенное под руководством профессора наноинженерии Калифорнийского университета в Сан-Диего Кеннета Веккио, посвящено классу керамики, известному как высокоэнтропийные карбиды. Эти материалы имеют крайне неупорядоченную атомную структуру, состоящую из атомов углерода, соединенных с несколькими металлическими элементами из четвертого, пятого и шестого столбцов периодической таблицы. К таким металлам относятся, например, титан, ниобий и вольфрам. Исследователи пришли к выводу, что ключ к повышению прочности керамики лежит в использовании металлов из пятого и шестого столбцов периодической таблицы, поскольку у них большее количество валентных электронов. Валентные электроны — те, которые находятся во внешней оболочке атома и участвуют в связях с другими атомами, — оказались решающим фактором. Используя металлы с большим количеством валентных электронов, исследователи успешно повысили устойчивость материала к растрескиванию при механических нагрузках и напряжениях.
Чтобы лучше понять этот эффект, группа Веккио сотрудничала с Давиде Санджованни, профессором теоретической физики из Университета Линчепинга (Швеция). Санджованни выполнил вычислительное моделирование, а группа Веккио экспериментально изготовила и испытала материалы. Группа исследовала высокоэнтропийные карбиды, содержащие различные комбинации пяти металлических элементов. Каждая комбинация давала различную концентрацию валентных электронов в материале. Благодаря высокой концентрации валентных электронов были обнаружены два высокоэнтропийных карбида, которые демонстрировали исключительную устойчивость к растрескиванию под нагрузкой или напряжением. Один из них состоял из металлов ванадия, ниобия, тантала, молибдена и вольфрама. В другом варианте ниобий заменен на хром. При механической нагрузке или напряжении эти материалы способны деформироваться или растягиваться соответственно, что напоминает поведение металлов, а не типичную хрупкую реакцию керамики. При проколе или растяжении этих материалов связи начинали разрываться, образуя отверстия размером с атом. Дополнительные валентные электроны вокруг атомов металла реорганизуются, перекрывая эти отверстия и образуя новые связи между соседними атомами металла. Этот механизм сохраняет структуру материала вокруг отверстий, эффективно препятствуя их увеличению и образованию трещин.
Теперь задача состоит в том, чтобы увеличить масштабы производства этой прочной керамики для коммерческого применения. Это может помочь изменить технологии, в которых используются высокоэффективные керамические материалы — от аэрокосмических компонентов до биомедицинских имплантатов. Обнаруженная прочность керамики также открывает путь к ее использованию в экстремальных областях, например, в качестве передних кромок гиперзвуковых аппаратов. Более жесткая керамика может служить передней защитой таких аппаратов, защищая жизненно важные компоненты от столкновения с обломками и позволяя аппаратам лучше выдерживать сверхзвуковые полеты, пояснил Веккио.
19.10.2023 |
Хайтек
AEM: Гибридный полупроводник позволит лучше понять спинтронику | |
Электроны вращаются без электрического за... |
Томские ученые представили цифровое решение для оптимизации НПЗ | |
Новый программный комплекс представили ученые ... |
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью | |
Методику создания синтетических данных для&nbs... |
Численное моделирование повысит эффективность 3D-печати из стали 316LSi | |
Морская нержавейка, или сталь 316LSi, шир... |
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей | |
Новый сплав на основе алюминия создали ис... |
В НГУ разработали первые фильтры для технологии связи 6G | |
Уникальные фильтры для импульсной терагер... |
Nat. Nanotechnol: Разработан самоочищающийся электрод для синтеза пероксидов | |
Пероксиды металлов — MO₂, M=Ca, Sr,... |
В СПбГУ создали новые биоактивные молекулы с помощью золотого катализатора | |
Метод соединения двух простых веществ с п... |
AFM: Разработан материал для поглощения электромагнитных волн широкого спектра | |
Ультратонкий пленочный композитный материал, с... |
PRL: Доказана возможность открытия новых сверхтяжелых элементов | |
Уран — самый тяжелый из извест... |
NE: Новый жидкостный акустический датчик распознаёт голоса в шумной обстановке | |
Инженеры разработали множество сложных датчико... |
Science: Новый метод спектроскопии раскрывает квантовые секреты воды | |
Вода — это жизнь. Но водо... |
В ИРНИТУ создали первую партию инклинометров и объединили их в умную сеть | |
Сотрудники Центра маркшейдерских и геодез... |
Ученые УУНиТ создали первый отечественный станок для сухого электрополирования | |
Ученые Уфимского университета науки и тех... |
Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет | |
Физическая модель, которая описывает взаимодей... |
Новый метод синтеза лекарств открыли российские химики | |
Новый метод синтеза производных пирролизидина ... |
Advanced Materials: Созданы волокна в одежду для питания смартфона от тепла тела | |
Термоэлектрический материал, который можно исп... |
Ultrafast Science: Ученые успешно ускорили идентификацию молекул лазером | |
В 100 раз ускорили измерения спектроскопи... |
В УрФУ разработали технологию 3D-печати из жаропрочных титановых сплавов | |
Технологию создания жаропрочных сплавов на&nbs... |
Ученые ЮУрГУ предложили уникальную технологию повышения надежности сварки | |
Уникальную технологию повышения надежности сва... |
В Томском университете создали интегральные схемы для российских РЛС | |
Первый российский комплект интегральных схем д... |
Российские ученые приблизились к созданию искусственной сетчатки | |
Оптоэлектронный синапс — мемристор ... |
Экологичная замена полиэтиленовым упаковкам разработана в МГУ | |
Биоразлагаемый полимер — полипропил... |
CS: Создана технология производства компонентов для шампуней и лекарств | |
Исследователи из России и Китая разр... |
APN: Фотонные вычисления помогут продвинуться в области аналоговых вычислений | |
Дифференциальные уравнения с частными про... |
Ученые НИТУ МИСИС разработали магнитные микропровода для имплантатов и датчиков | |
Новые ультратонкие аморфные микропровода, кото... |
NP: Открыт новый метод, предлагающий решения для сложных задач визуализации | |
Новый метод вычислительной голографии позволяе... |
В Пермском Политехе усовершенствовали алгоритм оценки состояния оборудования | |
Для оценки состояния оборудования или все... |
NP: Создана фотонная решетка, способная манипулировать квантовыми состояниями | |
Синтетическую фотонную решетку, которая может ... |
Physical Review C: Синтезирован новый изотоп плутония | |
Физики из Китая выяснили, что период... |