Датчики — важнейшие инструменты для обнаружения и анализа следов молекул в самых разных областях, включая мониторинг окружающей среды, безопасность пищевых продуктов и здравоохранение. Однако разработка датчиков с достаточно высокой чувствительностью для обнаружения крошечных молекул все еще остается сложной задачей. Одним из перспективных подходов является поверхностно-усиленное инфракрасное поглощение (SEIRA), которое использует плазмонные наноструктуры для усиления инфракрасных сигналов молекул, адсорбированных на их поверхности. Графен является особенно перспективным материалом для SEIRA благодаря своей высокой чувствительности и настраиваемости. Однако взаимодействие между графеном и молекулами ослаблено внутренним молекулярным затуханием. В новой работе, опубликованной в журнале eLight, исследователи из нескольких институтов продемонстрировали новый подход к улучшению чувствительности SEIRA. Этот подход использует синтезированные комплексно-частотные волны (КЧВ) для усиления молекулярных сигналов, обнаруживаемых датчиками на основе графена, по крайней мере, на порядок. Он также применим к молекулярному зондированию в различных фазах. Впервые SEIRA была продемонстрирована на тонких пленках Ag и Au. Однако развитие нанопроизводства и разработка новых плазмонных материалов привели к появлению плазмонных наноструктур, способных гораздо сильнее усиливать сигналы биомолекул. По сравнению с SEIRA на основе металлов, сильное ограничение поля, поддерживаемое двумерными (2D) фермионными электронными состояниями Дирака, позволяет использовать SEIRA на основе графена с превосходными характеристиками для определения молекул в газовой и твердой фазах. Графен также может усиливать молекулярное ИК-поглощение в водном растворе. Примечательно, что активная настраиваемость графеновых плазмонов расширяет диапазон частот обнаружения различных молекулярных колебательных мод путем изменения уровня легирования через напряжение на затворе. Эти преимущества делают SEIRA на основе графена уникальной платформой для обнаружения молекулярных монослоев. Однако собственное молекулярное затухание значительно снижает взаимодействие между колебательными модами и плазмонами. В результате при очень низких концентрациях спектры молекулярных сигналов, усиленных плазмонами, становятся очень слабыми и широкими и в конечном итоге затмеваются шумом. Один из способов компенсировать молекулярное затухание — добавить оптические материалы усиления. Однако это требует сложной установки, которая может быть несовместима с системой обнаружения. Кроме того, материалы усиления обычно увеличивают нестабильность и шум. Другой возможностью является использование волн сложной частоты (CFW); теоретические исследования доказали, что CFW с временным затуханием могут восстановить потерю информации из-за потерь материала. Однако получение CFW в реальных оптических системах остается сложной задачей. Исследователи предлагают новый метод синтеза CFW путем объединения нескольких реальных частотных волн. Этот метод был успешно применен для улучшения пространственного разрешения суперлинз (см. Guan et al, Science, Science 381, 766-771, 2023). Исследователи показали, что синтезированные CFW могут значительно улучшить молекулярные колебательные отпечатки в SEIRA на основе графена. Они успешно применяют синтезированные CFW для улучшения молекулярных сигналов в спектре экстинкции среднего ИК-диапазона для биомолекул в различных условиях, включая прямое измерение нескольких колебательных мод молекул дезоксиниваленола (DON) и SEIRA белков на основе графена как в твердой фазе, так и в водном растворе. Этот новый подход к SEIRA с использованием синтезированных CFWs хорошо масштабируется на различные технологии SEIRA и может в целом увеличить чувствительность обнаружения традиционных технологий SEIRA. Он может быть использован для разработки сверхчувствительных сенсоров для широкого спектра приложений, таких как ранняя диагностика заболеваний, персонализированная медицина и быстрое обнаружение токсичных агентов. Этот подход может произвести революцию в области молекулярного зондирования, позволяя обнаруживать следовые молекулы, которые в настоящее время невозможно обнаружить. 07.01.2024 |
Хайтек
Applied Physics Express: Изобретен компактный лазер для дезинфекции | |
Первый в мире компактный синий полупровод... |
Ученые ЮУрГУ создают ковалентные каркасы — новый материал для оптики | |
Новые вещества под названием ковалентные ... |
Нагреватель будущего: как разработка студента МФТИ изменит наноэлектронику | |
Студент магистратуры Московского физико-технич... |
Выяснилось, что композиты с древесиной лучше выдерживают высокие температуры | |
Ученые из Российского экономического унив... |
Излучение 5G меняет ткани мозга крыс, но решать, плохо это или хорошо, пока рано | |
Ученые ТГУ провели эксперимент и про... |
Робот с винтовым двигателем сможет добывать полезные ископаемые на Луне | |
Экспериментальный робот показал, что може... |
Ученые создали элементы системы управления синхротронным пучком для СКИФа | |
Сотрудники университета и ученые из ... |
PNAS: Создан реактор для безопасной добычи лития из соляных растворов | |
Новое устройство, которое позволяет добывать л... |
Nature: Ученые исследуют строение ядер химических элементов с помощью лазеров | |
Группа ученых из разных стран попыталась ... |
Nature Nanotechnology: Новый материал охлаждает на 72% лучше любых термопаст | |
В местах, где хранятся и обрабатываю... |
NatComm: Учёные приблизились к созданию биополимеров, реагирующих на воду | |
Новый подход для понимания и предска... |
В Челябинске разрабатывают инновационное оборудование для вибрационных испытаний | |
Специалисты ЮУрГУ совместно с Уральским и... |
В ТПУ создали многоразовые накопители водорода из отечественного сырья | |
Более дешевые металлогидридные накопители водо... |
Новый подход к производству цифрового света решает проблемы 3D-печати | |
Новый метод производства цифрового света для&n... |
AEM: Гибридный полупроводник позволит лучше понять спинтронику | |
Электроны вращаются без электрического за... |
Томские ученые представили цифровое решение для оптимизации НПЗ | |
Новый программный комплекс представили ученые ... |
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью | |
Методику создания синтетических данных для&nbs... |
Численное моделирование повысит эффективность 3D-печати из стали 316LSi | |
Морская нержавейка, или сталь 316LSi, шир... |
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей | |
Новый сплав на основе алюминия создали ис... |
В НГУ разработали первые фильтры для технологии связи 6G | |
Уникальные фильтры для импульсной терагер... |
Nat. Nanotechnol: Разработан самоочищающийся электрод для синтеза пероксидов | |
Пероксиды металлов — MO₂, M=Ca, Sr,... |
В СПбГУ создали новые биоактивные молекулы с помощью золотого катализатора | |
Метод соединения двух простых веществ с п... |
AFM: Разработан материал для поглощения электромагнитных волн широкого спектра | |
Ультратонкий пленочный композитный материал, с... |
PRL: Доказана возможность открытия новых сверхтяжелых элементов | |
Уран — самый тяжелый из извест... |
NE: Новый жидкостный акустический датчик распознаёт голоса в шумной обстановке | |
Инженеры разработали множество сложных датчико... |
Science: Новый метод спектроскопии раскрывает квантовые секреты воды | |
Вода — это жизнь. Но водо... |
В ИРНИТУ создали первую партию инклинометров и объединили их в умную сеть | |
Сотрудники Центра маркшейдерских и геодез... |
Ученые УУНиТ создали первый отечественный станок для сухого электрополирования | |
Ученые Уфимского университета науки и тех... |
Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет | |
Физическая модель, которая описывает взаимодей... |
Новый метод синтеза лекарств открыли российские химики | |
Новый метод синтеза производных пирролизидина ... |