![]() |
С помощью систем струйной 3D-печати инженеры могут создавать гибридные конструкции, состоящие из мягких и жестких компонентов, например, роботизированные захваты, достаточно прочные для захвата тяжелых предметов, но достаточно мягкие для безопасного взаимодействия с человеком. В этих многоматериальных системах 3D-печати используются тысячи сопел для нанесения крошечных капель смолы, которые разглаживаются скребком или валиком и отверждаются под действием УФ-излучения. Однако процесс разглаживания может смять или размазать смолу, которая отверждается медленно, что ограничивает возможности использования материалов. Исследователи из Массачусетского технологического института, компании Inkbit и Высшей технической школы Цюриха разработали новую систему струйной 3D-печати, которая работает с гораздо более широким спектром материалов. Принтер использует компьютерное зрение для автоматического сканирования поверхности 3D-печати и регулировки количества смолы, подаваемой каждой форсункой в режиме реального времени, чтобы не допустить переизбытка или недостатка материала. Поскольку для разглаживания смолы не требуются механические детали, эта бесконтактная система работает с материалами, которые отверждаются медленнее, чем акрилаты, традиционно используемые в 3D-печати. Некоторые химические составы материалов с более медленным отверждением могут иметь улучшенные характеристики по сравнению с акрилатами, например, большую эластичность, прочность или долговечность. Кроме того, автоматическая система вносит коррективы, не останавливая и не замедляя процесс печати, что делает этот принтер производственного класса примерно в 660 раз быстрее, чем аналогичная система струйной 3D-печати. Исследователи использовали этот принтер для создания сложных роботизированных устройств, сочетающих мягкие и жесткие материалы. Например, они изготовили полностью 3D-печатный роботизированный захват, по форме напоминающий человеческую руку и управляемый набором армированных, но гибких сухожилий.
В работе над статьей принимают участие ведущий автор Томас Бухнер (Thomas Buchner), докторант ETH Zurich, соавтор Роберт Кацшманн (Robert Katzschmann), PhD '18, доцент кафедры робототехники, возглавляющий лабораторию мягкой робототехники ETH Zurich, а также другие сотрудники ETH Zurich и Inkbit. Результаты исследования опубликованы в журнале Nature. Контакт бесплатныйДанная работа основана на недорогом мультиматериальном 3D-принтере MultiFab, который исследователи представили в 2015 году. Благодаря использованию тысяч сопел для нанесения крошечных капель смолы, отверждаемой ультрафиолетовым излучением, MultiFab позволяет осуществлять 3D-печать с высоким разрешением с использованием до 10 материалов одновременно. В новом проекте исследователи стремились к бесконтактному процессу, который позволил бы расширить спектр материалов, используемых для изготовления более сложных устройств. Они разработали технологию, известную как струйная печать с контролем зрения, в которой используются четыре камеры с высокой частотой кадров и два лазера, быстро и непрерывно сканирующие поверхность печати. Камеры фиксируют, как тысячи сопел наносят крошечные капли смолы. Система компьютерного зрения преобразует изображение в карту глубины высокого разрешения, что занимает менее секунды. Система сравнивает карту глубины с CAD-моделью изготавливаемой детали и регулирует количество наносимой смолы, чтобы объект соответствовал конечной структуре. Автоматизированная система может вносить коррективы в работу каждого отдельного сопла. Поскольку принтер имеет 16 000 сопел, система может контролировать мелкие детали изготавливаемого устройства.
Уровень контроля, обеспечиваемый системой, позволяет очень точно печатать воском, который используется в качестве вспомогательного материала для создания полостей или сложных сетей каналов внутри объекта. Воск печатается под структурой по мере изготовления устройства. После завершения изготовления объект нагревается, воск плавится и стекает, оставляя открытые каналы по всему объекту. Благодаря возможности автоматической и быстрой регулировки количества материала, наносимого каждым из сопел в режиме реального времени, система не нуждается в механическом перемещении по поверхности печати для поддержания ее в ровном состоянии. Это позволяет принтеру использовать материалы, которые отверждаются более постепенно и были бы размазаны скребком. Превосходные материалыИсследователи использовали систему для печати материалами на основе тиола, которые отверждаются медленнее, чем традиционные акриловые материалы, используемые в 3D-печати. Однако материалы на основе тиолов более эластичны и не так легко разрушаются, как акрилаты. Кроме того, они более стабильны в широком диапазоне температур и не так быстро разрушаются под воздействием солнечного света.
Исследователи использовали материалы на основе тиола и воск для изготовления нескольких сложных устройств, которые в противном случае было бы практически невозможно создать с помощью существующих систем 3D-печати. Например, они изготовили функциональную роботизированную руку, управляемую сухожилиями, которая имеет 19 независимо приводимых в действие сухожилий, мягкие пальцы с сенсорными подушечками и жесткие кости, несущие нагрузку.
Команда также продемонстрировала технологию на примере насоса, похожего на сердце, со встроенными желудочками и искусственными сердечными клапанами, а также метаматериалов, которые можно запрограммировать на нелинейные свойства материала.
В настоящее время исследователи рассматривают возможность использования системы для печати гидрогелями, которые применяются в тканевой инженерии, а также кремниевыми материалами, эпоксидными смолами и специальными типами прочных полимеров. Они также хотят изучить новые области применения, такие как печать настраиваемых медицинских устройств, полупроводниковых полировальных пластин и даже более сложных роботов. 15.11.2023 |
Хайтек
![]() | |
PRL: Иридий усиливает магнитные свойства сплава Fe-Co | |
Магнитные материалы — это осно... |
![]() | |
Буровая установка на лыжах: в Татарстане ученые ускорили добычу нефти | |
Ученые из Передовой инженерной нефтяной ш... |
![]() | |
Математику и металл объединили для идеальных труб | |
Объединенная металлургическая компания из ... |
![]() | |
Открытие, которое притягивает: новая технология производства магнитов | |
В Корейском институте материаловедения команда... |
![]() | |
Обзор мини-ПК OSIO BaseLine B51i: компактность и универсальность | |
Мини-ПК OSIO BaseLine B51i — это&nb... |
![]() | |
Луч, который зажигает звезды: в МИФИ собирают гигантский лазер | |
В НИЯУ МИФИ начали собирать огромный оптически... |
![]() | |
Секрет долговечности: как ученые заставили полимеры работать дольше | |
Ученые из Института проблем машиноведения... |
![]() | |
Литий без вреда для среды: как соленые озера стали источником чистой энергии | |
Исследователи придумали новый способ добычи ли... |
![]() | |
MXene в 3D-печати: прорыв в создании микроструктур | |
Исследовательская группа Smart 3D Printing из&... |
![]() | |
Холодный старт: как ученые заставили водород выделяться при низких температурах | |
Ученые из Томского политехнического униве... |
![]() | |
Бор и азот: как химики нашли ключ к новым материалам | |
Ученые придумали новый способ, как соедин... |
![]() | |
Не все то золото, что светит: перовскитные светодиоды на пути к успеху | |
Ученые из Университета Линчепинга доказал... |
![]() | |
PRB: Ученые упростили изучение квантовой запутанности | |
Когда-то Альберт Эйнштейн называл квантовую за... |
![]() | |
Разработана 3D-визуализация по образу стрекозы: новый шаг в технологиях | |
Технологии создания изображений не стоят ... |
![]() | |
Квантовый рывок: процессор Zuchongzhi-3 обогнал суперкомпьютеры | |
Группа ученых из Китайского университета ... |
![]() | |
Смотрите вглубь: как ИИ и гиперспектральная камера читают вашу ладонь | |
Гиперспектральная съемка — это ... |
![]() | |
Разработана одежда с секретом: проведите рукой — и она сработает | |
Команда ученых из Ноттингемского универси... |
![]() | |
Внимание, фермер: тамбовский дрон тебе товарищ | |
Группа ученых из Тамбовского государствен... |
![]() | |
Катализатор, который работает: ученые нашли замену дорогим металлам | |
Недавно ученые из Института науки Токио с... |
![]() | |
Финляндия запустила 50-кубитный компьютер: как это изменит науку и бизнес | |
Финляндия сделала большой шаг вперед в&nb... |
![]() | |
Оранжевый прорыв: как бор и углерод нашли общий язык | |
Бор, углерод, азот и кислород &mdash... |
![]() | |
Медь + графен: ученые создали материал для охлаждения электроники | |
Ученые придумали новый способ создавать легкие... |
![]() | |
Волгоградские ученые создали робота для вертикального перемещения | |
Ученые из Волгоградского государственного... |
![]() | |
Вода вместо токсинов: как ученые МИСИС изменили производство авиадеталей | |
Исследователи из НИТУ МИСИС представили н... |
![]() | |
Сложные молекулы, простые идеи: биомиметика меняет фармацевтику | |
В недавней статье в журнале Engineering у... |
![]() | |
Литий без компромиссов: ученые нашли способ добывать его чище и быстрее | |
В мире, где спрос на литий растет ка... |
![]() | |
Ученые КФУ разработали метод создания пьезоэлектриков на основе дипептидов | |
Ученые из Химического института имени А.М... |
![]() | |
Ученые создали идеальный материал для гибких экранов | |
Растягивающиеся материалы для экранов ста... |
![]() | |
Оксид алюминия заставляет молекулы светиться ярче | |
Ученые выяснили, что тонкие пленки из&nbs... |
![]() | |
Гнуть, но не ломать: казанские инженеры изменили правила игры в авиации | |
Казанские инженеры из КНИТУ-КАИ придумали... |