Научное светило. Найден новый материал для сверхконверсии фотонов солнечного света

Значение солнечной энергии в качестве возобновляемого энергетического ресурса постоянно растет.

Солнечный спектр содержит высокоэнергетический ультрафиолетовый свет с длиной волны короче 400 нм, который может широко использоваться, например, для фотополимеризации с образованием смолы и активации фотокатализаторов для запуска реакций, которые генерируют зеленый водород или полезные углеводороды (топливо, сахара, олефины и т.д.). Этот способ часто называют искусственным фотосинтезом.

Еще одним важным применением считается фотокаталитическая реакция под действием ультрафиолетового света для эффективного уничтожения вирусов и бактерий. К сожалению, только около 4% земного солнечного света попадает в ультрафиолетовый диапазон электромагнитного спектра, в то время как большая часть солнечного света остается незадействованной.

Фотонная сверхконверсия (UC) может стать ключом к решению данной проблемы. Речь идет о процессе преобразования длинноволновых низкоэнергетических фотонов (таких как фотоны видимого света) в коротковолновые высокоэнергетические фотоны (такие как фотоны ультрафиолетового света) путем триплет-триплетной аннигиляциеи (ТТА).

В предыдущих работах в этой области сообщалось о фотоэлектрическом преобразовании видимого света в ультрафиолетовый с использованием растворов органических растворителей, причем раствор сначала был дезоксигенирован, а затем запечатан в герметичный контейнер для предотвращения воздействия кислорода, который деактивирует и разрушает образцы фотонной сверхконверсии на основе ТТА.

Такие материалы не только не обладали фотостабильностью в присутствии кислорода, но и не могли эффективно работать при падающем свете с интенсивностью солнечного излучения. Эти проблемы препятствовали практическому применению фотонной сверхконверсии.

Однако двое ученых из Токийского технологического института — профессор Йоичи Мураками и его аспирант Рику Эномото — нашли решение всех этих проблем: принципиально новая твердая пленка, которая может обеспечивать фотонную сверхконверсию от видимого до ультрафиолетового света при слабом падающем свете, оставаясь фотостабильной в течение беспрецедентно долгого времени на воздухе. Они описали это прорывное изобретение в своей статье, опубликованной в журнале Journal of Materials Chemistry C.

Профессор Мураками объясняет новизну своего исследования.

Наше изобретение позволит на практике использовать видимую часть низкоинтенсивного света, такого как солнечный свет и светодиодный комнатный свет, для решения задач, которые эффективно решаются с помощью ультрафиолетового света.

А его фотостабильность, продемонстрированная, по крайней мере, в течение более чем 100 часов, даже в присутствии воздуха, является самой высокой из когда-либо зарегистрированных для любого материала фотонной сверхконверсии на основе триплет-триплетной аннигиляции, независимо от формы.

Помимо рекордной фотостабильности эти пленки обладали ультранизким порогом возбуждения (всего 0,3-кратная солнечная интенсивность) и высоким квантовым выходом сверхконверсии 4,3% (обычная эффективность излучения сверхконверсии 8,6%), и все это в присутствии воздуха, что делает данный материал единственным в своем роде, поскольку большинство материалов этого класса на воздухе теряют свою способность к фотонной сверхконверсии.

Чтобы приготовить этот материал, исследователи сплавили вместе сенсибилизатор (т.е. молекулярный хромофор, способный поглощать фотоны с большей длиной волны) с гораздо большим количеством аннигилятора (т.е. органической молекулы, которая получала энергию триплетного возбуждения от сенсибилизатора и затем вызывала процесс ТТА). Затем этот двухкомпонентный расплав охлаждался на поверхности с контролируемым градиентом температуры для формирования твердотельной тонкой пленки сверхконверсии фотонов видимого и ультрафиолетового диапазона.

Эта новая технология — градиентное затвердевание при температуре — является высококонтролируемой и воспроизводимой, что означает, что она совместима с реальными промышленными процессами. Профессор Мураками говорит:

Мы считаем, что затвердевание под контролем температуры может стать прочной основой для разработки передовых пленок фотонной сверхконверсии, которые также могут быть получены на твердой подложке без использования органических растворителей, что впервые продемонстрировано в данной работе.

Наконец, чтобы показать фотонную сверхконверсию тонкой пленки в видимом и ультрафиолетовом диапазоне, исследователи применили ее с имитацией солнечного света однократной интенсивности, состоящего только из видимого света, для успешного отверждения и застывания смолы. В противном случае для того же процесса потребовался бы ультрафиолетовый свет.

Данное исследование впервые представило новый класс сверхконверсионных твердых веществ с беспрецедентной фотостабильностью, которые реально могут использоваться для сверхконверсии фотонов видимого света низкой интенсивности в фотоны ультрафиолетового света прямо на воздухе.

Наше исследование не только расширит возможности изучения нового класса материалов, генерирующих УФ-свет, но и поможет существенно улучшить применение обильного слабого видимого света в тех областях, где используется ультрафиолетовый свет, — заключает профессор Мураками.

30.01.2023


Подписаться в Telegram



Хайтек

Applied Physics Express: Изобретен компактный лазер для дезинфекции
Applied Physics Express: Изобретен компактный лазер для дезинфекции

Первый в мире компактный синий полупровод...

PNAS: Создан реактор для безопасной добычи лития из соляных растворов
PNAS: Создан реактор для безопасной добычи лития из соляных растворов

Новое устройство, которое позволяет добывать л...

В ТПУ создали многоразовые накопители водорода из отечественного сырья
В ТПУ создали многоразовые накопители водорода из отечественного сырья

Более дешевые металлогидридные накопители водо...

Новый подход к производству цифрового света решает проблемы 3D-печати
Новый подход к производству цифрового света решает проблемы 3D-печати

Новый метод производства цифрового света для&n...

AEM: Гибридный полупроводник позволит лучше понять спинтронику
AEM: Гибридный полупроводник позволит лучше понять спинтронику

Электроны вращаются без электрического за...

Томские ученые представили цифровое решение для оптимизации НПЗ
Томские ученые представили цифровое решение для оптимизации НПЗ

Новый программный комплекс представили ученые ...

В НГУ разработали первые фильтры для технологии связи 6G
В НГУ разработали первые фильтры для технологии связи 6G

Уникальные фильтры для импульсной терагер...

Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет
Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет

Физическая модель, которая описывает взаимодей...

Новый метод синтеза лекарств открыли российские химики
Новый метод синтеза лекарств открыли российские химики

Новый метод синтеза производных пирролизидина ...

Поиск на сайте

Знатоки клуба инноваций


ТОП - Новости мира, инновации

Ученые МФТИ придумали, как пропатчить сердце
Ученые МФТИ придумали, как пропатчить сердце
В ТПУ научились управлять свойствами графена с помощью лазера
В ТПУ научились управлять свойствами графена с помощью лазера
Ученые научились производить заживляющие наночастицы в промышленных масштабах
Ученые научились производить заживляющие наночастицы в промышленных масштабах
Внеклеточные везикулы — новое слово в лечении воспалительных заболеваний кишечника
Внеклеточные везикулы — новое слово в лечении воспалительных заболеваний кишечника
The American Journal of Human Genetics: Бесплодие может быть вызвано мутацией
The American Journal of Human Genetics: Бесплодие может быть вызвано мутацией
Surfaces and Interfaces: Куркума и серебро на мембранах стерилизуют вирусы
Surfaces and Interfaces: Куркума и серебро на мембранах стерилизуют вирусы
1 укол вместо 15: в Челябинске предложили революционный метод лечения рака
1 укол вместо 15: в Челябинске предложили революционный метод лечения рака
Исследована двойная роль клеточного регулятора CED-9 в апоптозе
Исследована двойная роль клеточного регулятора CED-9 в апоптозе
Ученые из Новосибирска установили возраст шерсти детеныша саблезубой кошки
Ученые из Новосибирска установили возраст шерсти детеныша саблезубой кошки
Челябинские ученые создали систему управления объектами электроэнергетики
Челябинские ученые создали систему управления объектами электроэнергетики
PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене
PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене
PF: Семена чампати помогут физикам лучше понять оползни и каменные лавины
PF: Семена чампати помогут физикам лучше понять оползни и каменные лавины
Frontiers in Physiology: Космонавты обычно немного «тормозят» из-за стресса
Frontiers in Physiology: Космонавты обычно немного «тормозят» из-за стресса
Ученые СПбГУ и Сколтеха открыли секрет появления цыпленка
Ученые СПбГУ и Сколтеха открыли секрет появления цыпленка
В Московском Политехе создали алгоритм для прогнозирования пешеходного трафика
В Московском Политехе создали алгоритм для прогнозирования пешеходного трафика

Новости компаний, релизы

3D-печать: от самых смелых концепций до твердой реальности
КНИТУ вошёл в тройку лидеров по количеству перспективных российских стартапов
В ПсковГУ состоялось открытие научно-образовательной лаборатории «Когнитивное развитие в образовании»
Квантовая неделя в Санкт-Петербурге пройдет на площадке СПбГУ
СПбГУ в топ-5 лучших университетов стран БРИКС по версии Ассоциации составителей рейтингов