Значение солнечной энергии в качестве возобновляемого энергетического ресурса постоянно растет. Солнечный спектр содержит высокоэнергетический ультрафиолетовый свет с длиной волны короче 400 нм, который может широко использоваться, например, для фотополимеризации с образованием смолы и активации фотокатализаторов для запуска реакций, которые генерируют зеленый водород или полезные углеводороды (топливо, сахара, олефины и т.д.). Этот способ часто называют искусственным фотосинтезом. Еще одним важным применением считается фотокаталитическая реакция под действием ультрафиолетового света для эффективного уничтожения вирусов и бактерий. К сожалению, только около 4% земного солнечного света попадает в ультрафиолетовый диапазон электромагнитного спектра, в то время как большая часть солнечного света остается незадействованной. Фотонная сверхконверсия (UC) может стать ключом к решению данной проблемы. Речь идет о процессе преобразования длинноволновых низкоэнергетических фотонов (таких как фотоны видимого света) в коротковолновые высокоэнергетические фотоны (такие как фотоны ультрафиолетового света) путем триплет-триплетной аннигиляциеи (ТТА). В предыдущих работах в этой области сообщалось о фотоэлектрическом преобразовании видимого света в ультрафиолетовый с использованием растворов органических растворителей, причем раствор сначала был дезоксигенирован, а затем запечатан в герметичный контейнер для предотвращения воздействия кислорода, который деактивирует и разрушает образцы фотонной сверхконверсии на основе ТТА. Такие материалы не только не обладали фотостабильностью в присутствии кислорода, но и не могли эффективно работать при падающем свете с интенсивностью солнечного излучения. Эти проблемы препятствовали практическому применению фотонной сверхконверсии. Однако двое ученых из Токийского технологического института — профессор Йоичи Мураками и его аспирант Рику Эномото — нашли решение всех этих проблем: принципиально новая твердая пленка, которая может обеспечивать фотонную сверхконверсию от видимого до ультрафиолетового света при слабом падающем свете, оставаясь фотостабильной в течение беспрецедентно долгого времени на воздухе. Они описали это прорывное изобретение в своей статье, опубликованной в журнале Journal of Materials Chemistry C. Профессор Мураками объясняет новизну своего исследования.
Помимо рекордной фотостабильности эти пленки обладали ультранизким порогом возбуждения (всего 0,3-кратная солнечная интенсивность) и высоким квантовым выходом сверхконверсии 4,3% (обычная эффективность излучения сверхконверсии 8,6%), и все это в присутствии воздуха, что делает данный материал единственным в своем роде, поскольку большинство материалов этого класса на воздухе теряют свою способность к фотонной сверхконверсии. Чтобы приготовить этот материал, исследователи сплавили вместе сенсибилизатор (т.е. молекулярный хромофор, способный поглощать фотоны с большей длиной волны) с гораздо большим количеством аннигилятора (т.е. органической молекулы, которая получала энергию триплетного возбуждения от сенсибилизатора и затем вызывала процесс ТТА). Затем этот двухкомпонентный расплав охлаждался на поверхности с контролируемым градиентом температуры для формирования твердотельной тонкой пленки сверхконверсии фотонов видимого и ультрафиолетового диапазона. Эта новая технология — градиентное затвердевание при температуре — является высококонтролируемой и воспроизводимой, что означает, что она совместима с реальными промышленными процессами. Профессор Мураками говорит:
Наконец, чтобы показать фотонную сверхконверсию тонкой пленки в видимом и ультрафиолетовом диапазоне, исследователи применили ее с имитацией солнечного света однократной интенсивности, состоящего только из видимого света, для успешного отверждения и застывания смолы. В противном случае для того же процесса потребовался бы ультрафиолетовый свет. Данное исследование впервые представило новый класс сверхконверсионных твердых веществ с беспрецедентной фотостабильностью, которые реально могут использоваться для сверхконверсии фотонов видимого света низкой интенсивности в фотоны ультрафиолетового света прямо на воздухе.
30.01.2023 |
Хайтек
Открыт новый полупроводник с кристаллической решеткой в виде японского узора | |
Ученые СПбГУ вместе с коллегами из У... |
VCU: Аддитивное производство удешевляет производство магнитов | |
Новое исследование изменит производство традиц... |
SciRep: Разработан новый электроимпульсный метод переработки углеволокна | |
Мир стремительно движется к развитому буд... |
Российские ученые доказали теорию акустической турбулентности | |
Исследователи нашли новый способ моделирования... |
Производство термоядерной стали: первый промышленный успех в Великобритании | |
Рабочая группа Управления по атомной энер... |
ACSSCE: Превратить биомассу в полезный ресурс поможет инновационное устройство | |
Исследователи из Университета Кюсю разраб... |
Определен точный компьютерный алгоритм для восстановления изображения плазмы | |
Ученые обнаружили, что лучше всего изучат... |
Квантовый холодильник отлично очищает рабочее пространство квантового компьютера | |
Если вы хотите решить математическую зада... |
Катализатор нового поколения: ученые ускоряют производство водорода из аммиака | |
Ученые создали катализатор для получения ... |
В ТПУ разработали сенсоры для экспресс-мониторинга полезных и токсичных веществ | |
Специальные устройства — сенсоры, к... |
Умное кольцо с камерой позволяет управлять домашними устройствами | |
В то время как умные устройства в&nb... |
AIS: Носимый робот WeaRo снизит риск травм на производстве | |
Ученые разработали инновационного мягкого носи... |
Лазерные технологии будущего помогают создать микронаноматериал за один этап | |
Сверхбыстрый лазер всегда применялся в ка... |
MRAM-устройства будущего: создана новая технология с низким энергопотреблением | |
В последние годы появилось множество типов пам... |
Детектор sPHENIX готовится раскрыть тайны кварк-глюонной плазмы | |
Опираясь на наследие предшественника PHEN... |
Революционные квантовые технологии: как атомные часы изменят военные операции | |
Новаторские атомные часы, созданные в Вел... |
Успешно испытан новый метод измерения 5G-излучения мобильников и базовых станций | |
Группа исследователей из проекта GOLIAT р... |
PRA: Виноград поможет создать более совершенные квантовые технологии | |
Обычный виноград может улучшить работу квантов... |
В ПНИПУ нашли способ, как сократить простои и расходы на ремонт оборудования | |
На любом производстве, в том числе н... |
Совершен прорыв в области обнаружения коротковолнового инфракрасного излучения | |
Полевой транзистор с гетеропереходом, HGF... |
В СПбГУ втрое увеличили эффективность свечения многокомпонентной наноструктуры | |
Как сделать свечение некоторых устройств более... |
На СКИФе в Новосибирской области получили первый пучок электронов | |
В наукограде Кольцово, недалеко от Новоси... |
LS&A: Разработаны новые органические материалы для инфракрасных фотоприемников | |
Органические инфракрасные фотоприемники сталки... |
В POSTECH приблизили будущее с растягивающейся электроникой | |
Исследователи POSTECH создали новую технологию... |
В ННГУ создали импортозамещающую установку для альтернативных источников газа | |
Устройство для изучения процесса образова... |
В МИФИ разработали робота-официанта и уже заинтересовали общепит и супермаркет | |
Команда студентов Национального исследовательс... |
В МГУ открыли неожиданную трансформацию диоксида церия в фосфатных растворах | |
Ученые из МГУ, Института общей и нео... |
В МГУ моделируют свойства оксида магния в разных фазовых состояниях | |
Сотрудники кафедры физической химии химическог... |
В ТПУ создали сенсор для поиска пестицидов в 10 раз чувствительнее аналогов | |
Ученые из Томского политехнического униве... |
Устройство из специального стекла увеличит передачу данных в несколько раз | |
Ученые из Москвы и Нижнего Новгорода... |