Управлять физическими предметами на расстоянии, абсолютно не касаясь их — тайная мечта всего человечества, если предположить, что писатели-фантасты просто описывают то, что у всех на уме. Однако фантасты все чаще рассуждают о материях, само существование которых находится под большим вопросом, поскольку наука пока так далеко не зашла. И все же ученые кое-чего добились и научились перемещать предметы, не дотрагиваясь до них. Исследователям из университета Токио удалось усовершенствовать технологию подъема с твердой поверхности мелких частиц с помощью звуковых волн. Вообще эта технология известна аж с 1986 года и получила название «акустический пинцет», поскольку пока речь идет о манипуляциях действительно мелкими частицами. До недавних пор остро стояла проблема стабильности подъема частиц. Но теперь, используя адаптивный алгоритм для точной настройки управления пинцетом, исследователи значительно улучшили процесс. В дальнейшем технологию можно будет применять в широком диапазоне сред, включая космос, где нет одной важной составляющей — гравитации. Если захотите проверить, могут ли звуковые волны воздействовать на физические предметы, то встаньте перед мощным динамиком, заткните А если правильно настроить динамики на нужную частоту, амплитуду и фазу, то волны накладываются и формируют поле влияния, с помощью которого можно двигать, поднимать и удерживать физические объекты. Технология акустического пинцета позволит манипулировать предметами абсолютно бесконтактно, не загрязняя их.
Годом ранее доктор Шота Кондо и доцент Кан Окубо из Токийского университета представили бесконтактный подъем и перемещение миллиметровых частиц с помощью полусферического массива небольших ультразвуковых преобразователей. Каждым из преобразователей управляли индивидуально в соответствии со специальным алгоритмом. Так удалось создавать поля звукового давления, которые поднимали и перемещали объекты. Но процесс этот нельзя назвать стабильным, и это было проблемой. И вот теперь та же команда придумала, как все исправить, ничего не меняя радикально. Преобразователи работают в двух режимах: в фазе и вне фазы. Ученые предположили, что каждый из режимов лучше подходит для выполнения строго определенных задач.
Если переключать режимы, то можно добиться контролируемого и стабильного подъема, а также достичь стабильности внутри поля захвата уже после подъема частицы. Это, несомненно, важный шаг вперед на пути к технологии будущего, которая однажды поможет манипулировать образцами, для которых категорически недопустимо загрязнение. Результаты опубликованы в издании Japanese Journal of Applied Physics. 20.08.2022 |
Хайтек
Открыт новый полупроводник с кристаллической решеткой в виде японского узора | |
Ученые СПбГУ вместе с коллегами из У... |
VCU: Аддитивное производство удешевляет производство магнитов | |
Новое исследование изменит производство традиц... |
SciRep: Разработан новый электроимпульсный метод переработки углеволокна | |
Мир стремительно движется к развитому буд... |
Российские ученые доказали теорию акустической турбулентности | |
Исследователи нашли новый способ моделирования... |
Производство термоядерной стали: первый промышленный успех в Великобритании | |
Рабочая группа Управления по атомной энер... |
ACSSCE: Превратить биомассу в полезный ресурс поможет инновационное устройство | |
Исследователи из Университета Кюсю разраб... |
Определен точный компьютерный алгоритм для восстановления изображения плазмы | |
Ученые обнаружили, что лучше всего изучат... |
Квантовый холодильник отлично очищает рабочее пространство квантового компьютера | |
Если вы хотите решить математическую зада... |
Катализатор нового поколения: ученые ускоряют производство водорода из аммиака | |
Ученые создали катализатор для получения ... |
В ТПУ разработали сенсоры для экспресс-мониторинга полезных и токсичных веществ | |
Специальные устройства — сенсоры, к... |
Умное кольцо с камерой позволяет управлять домашними устройствами | |
В то время как умные устройства в&nb... |
AIS: Носимый робот WeaRo снизит риск травм на производстве | |
Ученые разработали инновационного мягкого носи... |
Лазерные технологии будущего помогают создать микронаноматериал за один этап | |
Сверхбыстрый лазер всегда применялся в ка... |
MRAM-устройства будущего: создана новая технология с низким энергопотреблением | |
В последние годы появилось множество типов пам... |
Детектор sPHENIX готовится раскрыть тайны кварк-глюонной плазмы | |
Опираясь на наследие предшественника PHEN... |
Революционные квантовые технологии: как атомные часы изменят военные операции | |
Новаторские атомные часы, созданные в Вел... |
Успешно испытан новый метод измерения 5G-излучения мобильников и базовых станций | |
Группа исследователей из проекта GOLIAT р... |
PRA: Виноград поможет создать более совершенные квантовые технологии | |
Обычный виноград может улучшить работу квантов... |
В ПНИПУ нашли способ, как сократить простои и расходы на ремонт оборудования | |
На любом производстве, в том числе н... |
Совершен прорыв в области обнаружения коротковолнового инфракрасного излучения | |
Полевой транзистор с гетеропереходом, HGF... |
В СПбГУ втрое увеличили эффективность свечения многокомпонентной наноструктуры | |
Как сделать свечение некоторых устройств более... |
На СКИФе в Новосибирской области получили первый пучок электронов | |
В наукограде Кольцово, недалеко от Новоси... |
LS&A: Разработаны новые органические материалы для инфракрасных фотоприемников | |
Органические инфракрасные фотоприемники сталки... |
В POSTECH приблизили будущее с растягивающейся электроникой | |
Исследователи POSTECH создали новую технологию... |
В ННГУ создали импортозамещающую установку для альтернативных источников газа | |
Устройство для изучения процесса образова... |
В МИФИ разработали робота-официанта и уже заинтересовали общепит и супермаркет | |
Команда студентов Национального исследовательс... |
В МГУ открыли неожиданную трансформацию диоксида церия в фосфатных растворах | |
Ученые из МГУ, Института общей и нео... |
В МГУ моделируют свойства оксида магния в разных фазовых состояниях | |
Сотрудники кафедры физической химии химическог... |
В ТПУ создали сенсор для поиска пестицидов в 10 раз чувствительнее аналогов | |
Ученые из Томского политехнического униве... |
Устройство из специального стекла увеличит передачу данных в несколько раз | |
Ученые из Москвы и Нижнего Новгорода... |