Ученые из Токийского столичного университета создали новую модель неупорядоченных материалов, чтобы изучить, как аморфные материалы сопротивляются нагрузкам. Они представили группы атомов и молекул в виде сфер с разной степенью мягкости. Подвергнув модель нагрузке, они обнаружили неожиданные различия между более твердыми областями и местами концентрации сил, причем области между такими областями «затвердевали», образуя вытянутые „силовые цепи“. Полученные результаты позволяют по-новому взглянуть на разработку более совершенных материалов. Когда речь идет о создании твердых материалов, недостаточно просто использовать твердые ингредиенты. Например, когда бетон разрушается во время землетрясений, возникающие силы концентрируются в определенных местах, что приводит к образованию трещин. Известно, что передача сил через аморфные твердые тела, такие как бетон и цемент, происходит по четко определенным путям, известным как «силовые цепи». Расшифровка этих цепочек поможет понять, как такие твердые тела ведут себя под нагрузкой, но пока неизвестно, как они возникают и как связаны со свойствами материала. Это вдохновило группу исследователей из Токийского столичного университета под руководством профессора Рея Куриты на создание простых и легкодоступных моделей аморфных материалов, которые могли бы научить нас тому, как формируются силовые цепочки. Вместо того чтобы просто моделировать движение всех атомов в материале, они решили представить группы атомов сферами с различной жесткостью, отражающими реакцию этих групп на силы. Исследуемые материалы характеризовались тем, насколько сильно варьировалась жесткость в пространстве и насколько широким был спектр твердых и мягких областей. Деформируя массив хлюпающих частиц, ученые сначала выясняли, коррелирует ли локальная жесткость с передачей силы по цепи. Изначально казалось, что существует четкая корреляция между более жесткими областями и силовыми цепями. Однако дальнейший анализ показал, что силовые цепи по своей форме больше похожи на струны и не так хорошо коррелируют с изолированными жесткими участками. Чтобы понять это несоответствие, команда исследовала более простую модель из двух жестких областей, разделенных более мягкой областью, и обнаружила, что более мягкая область становится плотнее, создавая большие силы, необходимые для поддержания цепочки. Это первый взгляд на фундаментальную механику того, как соединяются силовые цепи. Но как эти вариации влияют на свойства материала? Оказалось, что большие вариации мягкости и более широкие области «мягкое/твердое» приводят к неизменно более мягким материалам, как и большие вариации локальной плотности. Можно сделать вывод, что даже при одинаковых строительных блоках аморфные материалы с более равномерной жесткостью дают более твердый материал за счет более равномерного распределения силовых цепей. Хотя возникновение вариаций жесткости в реальных материалах остается неизученным, команда надеется, что их новая модель и механизм проложат путь к разработке принципов создания более совершенных материалов. Результаты опубликованы в издании Scientific Reports. 04.05.2024 |
Хайтек
Открыт новый полупроводник с кристаллической решеткой в виде японского узора | |
Ученые СПбГУ вместе с коллегами из У... |
VCU: Аддитивное производство удешевляет производство магнитов | |
Новое исследование изменит производство традиц... |
SciRep: Разработан новый электроимпульсный метод переработки углеволокна | |
Мир стремительно движется к развитому буд... |
Российские ученые доказали теорию акустической турбулентности | |
Исследователи нашли новый способ моделирования... |
Производство термоядерной стали: первый промышленный успех в Великобритании | |
Рабочая группа Управления по атомной энер... |
ACSSCE: Превратить биомассу в полезный ресурс поможет инновационное устройство | |
Исследователи из Университета Кюсю разраб... |
Определен точный компьютерный алгоритм для восстановления изображения плазмы | |
Ученые обнаружили, что лучше всего изучат... |
Квантовый холодильник отлично очищает рабочее пространство квантового компьютера | |
Если вы хотите решить математическую зада... |
Катализатор нового поколения: ученые ускоряют производство водорода из аммиака | |
Ученые создали катализатор для получения ... |
В ТПУ разработали сенсоры для экспресс-мониторинга полезных и токсичных веществ | |
Специальные устройства — сенсоры, к... |
Умное кольцо с камерой позволяет управлять домашними устройствами | |
В то время как умные устройства в&nb... |
AIS: Носимый робот WeaRo снизит риск травм на производстве | |
Ученые разработали инновационного мягкого носи... |
Лазерные технологии будущего помогают создать микронаноматериал за один этап | |
Сверхбыстрый лазер всегда применялся в ка... |
MRAM-устройства будущего: создана новая технология с низким энергопотреблением | |
В последние годы появилось множество типов пам... |
Детектор sPHENIX готовится раскрыть тайны кварк-глюонной плазмы | |
Опираясь на наследие предшественника PHEN... |
Революционные квантовые технологии: как атомные часы изменят военные операции | |
Новаторские атомные часы, созданные в Вел... |
Успешно испытан новый метод измерения 5G-излучения мобильников и базовых станций | |
Группа исследователей из проекта GOLIAT р... |
PRA: Виноград поможет создать более совершенные квантовые технологии | |
Обычный виноград может улучшить работу квантов... |
В ПНИПУ нашли способ, как сократить простои и расходы на ремонт оборудования | |
На любом производстве, в том числе н... |
Совершен прорыв в области обнаружения коротковолнового инфракрасного излучения | |
Полевой транзистор с гетеропереходом, HGF... |
В СПбГУ втрое увеличили эффективность свечения многокомпонентной наноструктуры | |
Как сделать свечение некоторых устройств более... |
На СКИФе в Новосибирской области получили первый пучок электронов | |
В наукограде Кольцово, недалеко от Новоси... |
LS&A: Разработаны новые органические материалы для инфракрасных фотоприемников | |
Органические инфракрасные фотоприемники сталки... |
В POSTECH приблизили будущее с растягивающейся электроникой | |
Исследователи POSTECH создали новую технологию... |
В ННГУ создали импортозамещающую установку для альтернативных источников газа | |
Устройство для изучения процесса образова... |
В МИФИ разработали робота-официанта и уже заинтересовали общепит и супермаркет | |
Команда студентов Национального исследовательс... |
В МГУ открыли неожиданную трансформацию диоксида церия в фосфатных растворах | |
Ученые из МГУ, Института общей и нео... |
В МГУ моделируют свойства оксида магния в разных фазовых состояниях | |
Сотрудники кафедры физической химии химическог... |
В ТПУ создали сенсор для поиска пестицидов в 10 раз чувствительнее аналогов | |
Ученые из Томского политехнического униве... |
Устройство из специального стекла увеличит передачу данных в несколько раз | |
Ученые из Москвы и Нижнего Новгорода... |