![]() |
Исследователи из Стэнфорда приблизились к созданию крошечного ускорителя электронов на основе технологии ускоритель-на-чипе с широким потенциалом применения в изучении физики, а также в медицине и промышленности. Исследователи продемонстрировали, что кремниевый диэлектрический лазерный ускоритель, или DLA, теперь может одновременно ускорять и удерживать электроны, создавая сфокусированный пучок высокоэнергетических электронов.
Ускорители от миль до микроновУскорители создают высокоэнергетические пучки частиц, которые позволяют физикам изучать свойства материалов, производить сфокусированные зонды для медицинских целей и определять элементарные строительные блоки, из которых состоит вся материя во Вселенной. Некоторые из самых первых ускорителей высокоэнергетических частиц, разработанных в 1930-х годах, умещались на столешнице. Но для изучения более сложной физики требовались более высокие энергии частиц, поэтому ученым пришлось создавать более крупные системы. (Запущенный в 1966 году, оригинальный туннель линейного ускорителя в Национальной ускорительной лаборатории SLAC в Стэнфордском кампусе имеет длину почти 2 мили). Хотя эти системы сделали возможными многочисленные открытия в области физики частиц, Броддус стремится создать крошечный линейный ускоритель, который в конечном итоге мог бы соперничать с машинами, более чем в тысячу раз превышающими его по размерам, при меньшей стоимости. Это также позволит найти новые применения в медицине, например, прикрепить это устройство к небольшому зонду и точно направить электронный луч на опухоль.
По словам Олафа Солгаарда, директора лаборатории Эдварда Л. Гинзтона, профессора инженерного факультета Роберта Л. и Одри С. Хэнкок и старшего автора статьи, благодаря достижениям в области производства наноматериалов и лазеров, такая перспектива становится все более реальной. Традиционные радиочастотные ускорители состоят из медных полостей, которые накачиваются радиоволнами, придающими частицам энергию. Эти импульсы могут нагревать металл, поэтому полости должны работать с меньшей энергией и частотой импульсов, чтобы рассеивать тепло и не плавиться. Но стеклянные и кремниевые структуры могут выдерживать гораздо более высокие энергии импульсов лазеров, не нагреваясь, поэтому они могут быть гораздо мощнее и при этом меньше. Около 10 лет назад исследователи Стэнфорда начали экспериментировать с наноразмерными структурами из этих материалов. В 2013 году группа под руководством соавтора статьи Роберта Байера, почетного профессора Уильяма Р. Кенана-мл. Почетный профессор, продемонстрировала, что крошечный стеклянный ускоритель с пульсирующим инфракрасным светом успешно ускоряет электроны. Эти результаты привели к тому, что проект был принят Фондом Гордона и Бетти Мур в рамках международного сотрудничества Accelerator on a Chip (ACHIP) для создания ускорителя мегаэлектрон-вольт размером с обувную коробку. Но в этом первом «ускорителе на чипе» все еще оставались недоработки. По словам Броддуса, электроны внутри него были похожи на автомобили на узкой дороге без руля. Они могли очень быстро разогнаться, но так же легко врезаться в стену. Управление электронами с помощью лазеровТеперь команда исследователей из Стэнфорда успешно продемонстрировала, что может управлять электронами на наноуровне. Для этого они создали кремниевую структуру с субмикронным каналом, помещенную в вакуумную систему. Они ввели электроны в один конец и осветили структуру с двух сторон импульсом лазера, обладающим кинетической энергией. Периодически лазерные поля переключались между фокусирующими и расфокусирующими свойствами, что скрепляло электроны, не давая им отклониться от курса. В общей сложности эта цепочка ускорений, расфокусировок и фокусировок действовала на электроны на расстоянии почти миллиметра. Казалось бы, это не так уж и далеко, но эти заряженные частицы получили неплохой толчок, набрав 23,7 килоэлектрон-вольт энергии, что примерно на 25% больше их начальной энергии. Скорость ускорения, которую команде удалось достичь в своем прототипе крошечного ускорителя, сопоставима с обычными медными ускорителями, и Броддус добавляет, что возможны гораздо более высокие скорости ускорения. Хотя это значительный шаг вперед, еще многое предстоит сделать, прежде чем эти маленькие ускорители смогут использоваться в промышленности, медицине и научных исследованиях. Пока что способность команды направлять электроны ограничена двумя измерениями; для того чтобы ускоритель был достаточно длинным для большего прироста энергии, потребуется трехмерное удерживание электронов. Электронная эстафетаРодственная исследовательская группа из Университета Фридриха Александра (FAU) в Эрлангене, Германия, недавно продемонстрировала аналогичное устройство с одним лазером и гораздо меньшей начальной энергией. По словам Броддуса, это устройство и устройство из Стэнфорда в конечном итоге станут частью своего рода электронной эстафеты. В этой будущей эстафете будут участвовать три члена команды: Устройство ФАУ будет принимать низкоэнергетические электроны и давать им начальный толчок, после чего их можно будет направить в устройство, подобное тому, которое разрабатывает Броддус. Последним шагом для электронов станет ускоритель из стекла, подобный тому, что разрабатывает Байер. Стекло выдерживает еще более сильное воздействие лазеров, чем кремний, что позволяет ускорителю еще больше зарядить электроны и разогнать их до скорости света. Со временем, как считает Солгаард, такой крошечный ускоритель пригодится в физике высоких энергий, исследуя фундаментальную материю, из которой состоит Вселенная, так же, как и его более крупные аналоги.
26.02.2024 |
Хайтек
![]() | |
Легкие и прочные: как Al-Sc сплавы покоряют промышленность | |
3D-печать меняет правила игры: она дает б... |
![]() | |
От шахт до чистой энергии: путь австралийской горнодобывающей промышленности | |
Горнодобывающая промышленность — эт... |
![]() | |
Ученые объединили два прибора в один, чтобы лучше анализировать газы | |
Физики из Санкт-Петербургского государств... |
![]() | |
Лазер, графен, полимер: как создают электронику, которую можно сгибать | |
Ученые из Томского политехнического униве... |
![]() | |
Световые качели: физики открыли новый способ управлять светом | |
Физики научились управлять светом в кроше... |
![]() | |
Тараканы-киборги — спасатели ближайшего будущего | |
От зон стихийных бедствий до экстрем... |
![]() | |
Магнит, зеленый свет и ультрафиолет: новые горизонты молекулярной химии | |
Химики создали новые соединения на основе... |
![]() | |
Свет вместо проводов: Оксфорд произвел революцию в квантовых вычислениях | |
Ученые из Оксфорда сделали большой шаг&nb... |
![]() | |
Органический катализатор, который имитирует металлы: открытие химиков СПбГУ | |
Химики из Санкт-Петербургского государств... |
![]() | |
Томские ученые раскрыли секреты молекулярных взаимодействий | |
Ученые из Томского политехнического униве... |
![]() | |
100 миллионов за молекулярный прорыв: в Уфе запустили супер-спектрометр | |
В Уфимском федеральном исследовательском центр... |
![]() | |
Прощай, кэш-память: новая технология сэкономит энергию и ускорит устройства | |
Исследователи вместе с французской компан... |
![]() | |
Энергия будущего: низкотемпературная плазма и ее невероятные возможности | |
Питер Брюггеман, профессор машиностроения из&n... |
![]() | |
10 секунд до чистоты: история устройства, которое изменило дезинфекцию | |
Ручной прибор MBR UV-C Light Products работает... |
![]() | |
От идеи до Росатома: история успеха проекта RSP | |
В НИЯУ МИФИ создали онлайн-сервис —... |
![]() | |
CARMA II — автономный робот, который делает ядерные объекты безопаснее | |
Передовая роботизированная система CARMA II ус... |
![]() | |
Нейросети будущего: поляритоны в СПбГУ бьют рекорды точности | |
Ученые из Санкт-Петербургского государств... |
![]() | |
Биотопливо за полтора часа: как томские ученые подстегнули энергетику | |
Междисциплинарная команда ученых из Томск... |
![]() | |
MIT учит дронов избегать столкновений: новый метод GCBF+ | |
Инженеры из MIT придумали, как сдела... |
![]() | |
Свет, который не вредит: в КНИТУ-КАИ открыли новый способ исследования клеток | |
Молодые ученые из КНИТУ-КАИ совершили про... |
![]() | |
Фокус на будущее: киноформные линзы меняют правила игры | |
Сотрудники лаборатории 3D-печати функциональны... |
![]() | |
ПГУ: Струна и закон Архимеда помогут сэкономить миллионы на нефтепродуктах | |
Ученые из Пензенского государственного ун... |
![]() | |
Российский минерал совершил революцию в мире двумерных материалов | |
Ученые Томского политехнического университета ... |
![]() | |
Свет из земли: как глина превратилась в дисплей | |
Мир дисплеев скоро изменится благодаря новым м... |
![]() | |
Будущее горнодобывающей промышленности: инновации, меняющие правила игры | |
Дэвид Джайлс, главный научный сотрудник MinEx ... |
![]() | |
В МИФИ создан радиоизотопный прибор для отечественной металлургии | |
В Национальном исследовательском ядерном униве... |
![]() | |
NatComm: Найден «благородный» способ увеличить вместимость карт памяти | |
Электронику будущего можно сделать еще ме... |
![]() | |
Преодоление физических барьеров: на пути к новым квантовым технологиям | |
Комментирует профессор Майя Вергниори, которая... |
![]() | |
Впервые в России: в Катайске начали выпуск уникальных насосов | |
Катайский насосный завод, который находится в&... |
![]() | |
Ученые ТПУ продемонстрировали, как у капель появляются «пальцы» | |
Исследователи из Томского политехническог... |