PRL: Ученые продвинулись в управляемом ускорении электронов в микромасштабе

Исследователи из Стэнфорда приблизились к созданию крошечного ускорителя электронов на основе технологии ускоритель-на-чипе с широким потенциалом применения в изучении физики, а также в медицине и промышленности.

Исследователи продемонстрировали, что кремниевый диэлектрический лазерный ускоритель, или DLA, теперь может одновременно ускорять и удерживать электроны, создавая сфокусированный пучок высокоэнергетических электронов.

Если бы электроны были микроскопическими автомобилями, то мы впервые смогли бы управлять ими и нажимать на газ, — говорит Пейтон Броддус, доктор философии в области электротехники и ведущий автор статьи, опубликованной в журнале Physical Review Letters, в которой подробно описывается этот прорыв.

Ускорители от миль до микронов

Ускорители создают высокоэнергетические пучки частиц, которые позволяют физикам изучать свойства материалов, производить сфокусированные зонды для медицинских целей и определять элементарные строительные блоки, из которых состоит вся материя во Вселенной. Некоторые из самых первых ускорителей высокоэнергетических частиц, разработанных в 1930-х годах, умещались на столешнице. Но для изучения более сложной физики требовались более высокие энергии частиц, поэтому ученым пришлось создавать более крупные системы. (Запущенный в 1966 году, оригинальный туннель линейного ускорителя в Национальной ускорительной лаборатории SLAC в Стэнфордском кампусе имеет длину почти 2 мили).

Хотя эти системы сделали возможными многочисленные открытия в области физики частиц, Броддус стремится создать крошечный линейный ускоритель, который в конечном итоге мог бы соперничать с машинами, более чем в тысячу раз превышающими его по размерам, при меньшей стоимости. Это также позволит найти новые применения в медицине, например, прикрепить это устройство к небольшому зонду и точно направить электронный луч на опухоль.

Есть возможность просто полностью заменить все остальные ускорители частиц на что-то более дешевое и компактное, — говорит он.

По словам Олафа Солгаарда, директора лаборатории Эдварда Л. Гинзтона, профессора инженерного факультета Роберта Л. и Одри С. Хэнкок и старшего автора статьи, благодаря достижениям в области производства наноматериалов и лазеров, такая перспектива становится все более реальной. Традиционные радиочастотные ускорители состоят из медных полостей, которые накачиваются радиоволнами, придающими частицам энергию. Эти импульсы могут нагревать металл, поэтому полости должны работать с меньшей энергией и частотой импульсов, чтобы рассеивать тепло и не плавиться.

Но стеклянные и кремниевые структуры могут выдерживать гораздо более высокие энергии импульсов лазеров, не нагреваясь, поэтому они могут быть гораздо мощнее и при этом меньше. Около 10 лет назад исследователи Стэнфорда начали экспериментировать с наноразмерными структурами из этих материалов. В 2013 году группа под руководством соавтора статьи Роберта Байера, почетного профессора Уильяма Р. Кенана-мл. Почетный профессор, продемонстрировала, что крошечный стеклянный ускоритель с пульсирующим инфракрасным светом успешно ускоряет электроны. Эти результаты привели к тому, что проект был принят Фондом Гордона и Бетти Мур в рамках международного сотрудничества Accelerator on a Chip (ACHIP) для создания ускорителя мегаэлектрон-вольт размером с обувную коробку.

Но в этом первом «ускорителе на чипе» все еще оставались недоработки. По словам Броддуса, электроны внутри него были похожи на автомобили на узкой дороге без руля. Они могли очень быстро разогнаться, но так же легко врезаться в стену.

Управление электронами с помощью лазеров

Теперь команда исследователей из Стэнфорда успешно продемонстрировала, что может управлять электронами на наноуровне. Для этого они создали кремниевую структуру с субмикронным каналом, помещенную в вакуумную систему. Они ввели электроны в один конец и осветили структуру с двух сторон импульсом лазера, обладающим кинетической энергией. Периодически лазерные поля переключались между фокусирующими и расфокусирующими свойствами, что скрепляло электроны, не давая им отклониться от курса.

В общей сложности эта цепочка ускорений, расфокусировок и фокусировок действовала на электроны на расстоянии почти миллиметра. Казалось бы, это не так уж и далеко, но эти заряженные частицы получили неплохой толчок, набрав 23,7 килоэлектрон-вольт энергии, что примерно на 25% больше их начальной энергии. Скорость ускорения, которую команде удалось достичь в своем прототипе крошечного ускорителя, сопоставима с обычными медными ускорителями, и Броддус добавляет, что возможны гораздо более высокие скорости ускорения.

Хотя это значительный шаг вперед, еще многое предстоит сделать, прежде чем эти маленькие ускорители смогут использоваться в промышленности, медицине и научных исследованиях. Пока что способность команды направлять электроны ограничена двумя измерениями; для того чтобы ускоритель был достаточно длинным для большего прироста энергии, потребуется трехмерное удерживание электронов.

Электронная эстафета

Родственная исследовательская группа из Университета Фридриха Александра (FAU) в Эрлангене, Германия, недавно продемонстрировала аналогичное устройство с одним лазером и гораздо меньшей начальной энергией. По словам Броддуса, это устройство и устройство из Стэнфорда в конечном итоге станут частью своего рода электронной эстафеты.

В этой будущей эстафете будут участвовать три члена команды: Устройство ФАУ будет принимать низкоэнергетические электроны и давать им начальный толчок, после чего их можно будет направить в устройство, подобное тому, которое разрабатывает Броддус. Последним шагом для электронов станет ускоритель из стекла, подобный тому, что разрабатывает Байер. Стекло выдерживает еще более сильное воздействие лазеров, чем кремний, что позволяет ускорителю еще больше зарядить электроны и разогнать их до скорости света.

Со временем, как считает Солгаард, такой крошечный ускоритель пригодится в физике высоких энергий, исследуя фундаментальную материю, из которой состоит Вселенная, так же, как и его более крупные аналоги.

Нам предстоит пройти очень, очень долгий путь», — говорит он. Но он не теряет оптимизма, добавляя: «Мы сделали несколько первых шагов».

26.02.2024


Подписаться в Telegram



Хайтек

Легкие и прочные: как Al-Sc сплавы покоряют промышленность
Легкие и прочные: как Al-Sc сплавы покоряют промышленность

3D-печать меняет правила игры: она дает б...

Световые качели: физики открыли новый способ управлять светом
Световые качели: физики открыли новый способ управлять светом

Физики научились управлять светом в кроше...

Тараканы-киборги — спасатели ближайшего будущего
Тараканы-киборги — спасатели ближайшего будущего

От зон стихийных бедствий до экстрем...

Томские ученые раскрыли секреты молекулярных взаимодействий
Томские ученые раскрыли секреты молекулярных взаимодействий

Ученые из Томского политехнического униве...

100 миллионов за молекулярный прорыв: в Уфе запустили супер-спектрометр
100 миллионов за молекулярный прорыв: в Уфе запустили супер-спектрометр

В Уфимском федеральном исследовательском центр...

От идеи до Росатома: история успеха проекта RSP
От идеи до Росатома: история успеха проекта RSP

В НИЯУ МИФИ создали онлайн-сервис —...

CARMA II — автономный робот, который делает ядерные объекты безопаснее
CARMA II — автономный робот, который делает ядерные объекты безопаснее

Передовая роботизированная система CARMA II ус...

Нейросети будущего: поляритоны в СПбГУ бьют рекорды точности
Нейросети будущего: поляритоны в СПбГУ бьют рекорды точности

Ученые из Санкт-Петербургского государств...

MIT учит дронов избегать столкновений: новый метод GCBF+
MIT учит дронов избегать столкновений: новый метод GCBF+

Инженеры из MIT придумали, как сдела...

Фокус на будущее: киноформные линзы меняют правила игры
Фокус на будущее: киноформные линзы меняют правила игры

Сотрудники лаборатории 3D-печати функциональны...

Российский минерал совершил революцию в мире двумерных материалов
Российский минерал совершил революцию в мире двумерных материалов

Ученые Томского политехнического университета ...

Свет из земли: как глина превратилась в дисплей
Свет из земли: как глина превратилась в дисплей

Мир дисплеев скоро изменится благодаря новым м...

В МИФИ создан радиоизотопный прибор для отечественной металлургии
В МИФИ создан радиоизотопный прибор для отечественной металлургии

В Национальном исследовательском ядерном униве...

Преодоление физических барьеров: на пути к новым квантовым технологиям
Преодоление физических барьеров: на пути к новым квантовым технологиям

Комментирует профессор Майя Вергниори, которая...

Впервые в России: в Катайске начали выпуск уникальных насосов
Впервые в России: в Катайске начали выпуск уникальных насосов

Катайский насосный завод, который находится в&...

Ученые ТПУ продемонстрировали, как у капель появляются «пальцы»
Ученые ТПУ продемонстрировали, как у капель появляются «пальцы»

Исследователи из Томского политехническог...

Поиск на сайте

Знатоки клуба инноваций


ТОП - Новости мира, инновации

Cell Reports: Голодание приносит пользу взрослым, но создает риск для подростков
Cell Reports: Голодание приносит пользу взрослым, но создает риск для подростков
Легкие и прочные: как Al-Sc сплавы покоряют промышленность
Легкие и прочные: как Al-Sc сплавы покоряют промышленность
69 ученых, которые меняют мир: история успеха из Нижнего Новгорода
69 ученых, которые меняют мир: история успеха из Нижнего Новгорода
Невидимые враги: как ароматизаторы превращают ваш дом в угрозу для здоровья
Невидимые враги: как ароматизаторы превращают ваш дом в угрозу для здоровья
Как взрываются звезды: открытия, которые меняют наше представление о Вселенной
Как взрываются звезды: открытия, которые меняют наше представление о Вселенной
Как получить инструмент будущих инженеров бесплатно, если ты студент
Как получить инструмент будущих инженеров бесплатно, если ты студент
Спасти жизнь за минуты сможет кетамин в борьбе с эпилептическим статусом
Спасти жизнь за минуты сможет кетамин в борьбе с эпилептическим статусом
От шахт до чистой энергии: путь австралийской горнодобывающей промышленности
От шахт до чистой энергии: путь австралийской горнодобывающей промышленности
Без капитана, но с комфортом: в Нижнем Новгороде строят судно без экипажа
Без капитана, но с комфортом: в Нижнем Новгороде строят судно без экипажа
Цикорий и кобальт: дуэт против рака, бьющий точно в цель
Цикорий и кобальт: дуэт против рака, бьющий точно в цель
Больничные раковины и невидимый враг, который в них живет
Больничные раковины и невидимый враг, который в них живет
Лазер, графен, полимер: как создают электронику, которую можно сгибать
Лазер, графен, полимер: как создают электронику, которую можно сгибать
Ученые объединили два прибора в один, чтобы лучше анализировать газы
Ученые объединили два прибора в один, чтобы лучше анализировать газы
Световые качели: физики открыли новый способ управлять светом
Световые качели: физики открыли новый способ управлять светом
Удаленка навсегда: как бизнес адаптируется к новым реалиям
Удаленка навсегда: как бизнес адаптируется к новым реалиям

Новости компаний, релизы

Более 200 нижегородцев посетили научные кинопоказы честь Дня российской науки
Школьников и студентов Хабаровского края приглашают написать всероссийский диктант «Наука во имя Победы»
На Фестивале «Москва — Точка старта» победили проекты из МИФИ
В Калуге обсудили меры поддержки молодых учёных региона
Международные эксперты оценили разработанную для нижегородского завода технологию