Исследователи из Принстона применили сплетение волокон, поддерживающих структуру живых клеток, для разработки нанотехнологической платформы. В конечном итоге новая разработка может привести к развитию мягкой робототехники, созданию новых лекарств и синтетических систем для высокоточного переноса биомолекул. В статье, опубликованной 17 января в Proceedings of the National Academy of Sciences, исследователи продемонстрировали метод, который позволяет им точно контролировать рост биополимерных сетей, подобных тем, что составляют часть клеточного скелета. Они смогли построить эти сети на микрочипе, сформировав тип цепи, работающей с химическими, а не электрическими сигналами. Внутри клеток белки тубулина образуют длинные и невероятно тонкие стержни, называемые микротрубочками. Сети микротрубочек, подобно корням деревьев, разрастаются в разветвленные системы, образующие основной элемент цитоскелета, который придает клеткам форму и позволяет им делиться. Кроме того, что микротрубочки помогают поддерживать форму клетки, они также работают как молекулярная железная дорога. Специализированные белки-двигатели переносят молекулярные грузы по филаментам микротрубочек. Небольшие изменения в молекулярном составе микротрубочек действуют как указатели, корректирующие курс химических носителей, отправляя молекулярные грузы по назначению. В Принстоне вопросы об этих внутриклеточных сетях привели к сотрудничеству Сабины Петри, доцента кафедры молекулярной биологии, и Говарда Стоуна, профессора механической и аэрокосмической инженерии, специализирующегося на механике жидкостей.
В нервной системе сети микротрубочек работают как структуры, соединяющие нервные клетки, и как средство передачи химических сигналов, вызывающих ощущения. По словам Заферани, ученые все еще работают над пониманием элементов роста и химических свойств микротрубочек. Но, по его словам, исследовательская группа хотела узнать, смогут ли они использовать эти сети для практического применения.
Вместе с соисследователем Рюнджуном Сонгом Заферани работал над созданием системы контроля роста микротрубочек в чистых лабораториях Принстонского института материалов. Используя специализированное оборудование для микро/нанофабрикации и микрофлюидики, исследователи точно контролировали рост ветвей микротрубочек. Они могли регулировать угол и направление роста и смогли создать микроструктуры, в которых направление роста микротрубочек регулировалось. По словам Заферани, Институт материалов предлагает уникальное сочетание оборудования и опыта, которое трудно найти В дальнейшем исследователи планируют направлять химические грузы вдоль ветвей микротрубочек. Цель — создать управляемую химическую транспортную систему. В рамках смежной работы они также изучают возможность использования сетей микротрубочек в качестве инструментов, подобных микропинцетам, которые оказывают физическое воздействие на невероятно крошечные объекты. Исследовательская группа Петри давно сотрудничает со Стоуном, профессором механической и аэрокосмической инженерии Дональдом Р. Диксоном '69 и Элизабет В. Диксон, на стыке биологии и гидродинамики. В 2021 году они получили грант от Принстонского фонда трансформирующихся технологий Эрика и Венди Шмидт. Они наняли Сонга, инженера-механика, который в своей аспирантуре занимался микрофлюидикой, и Заферани, биофизика, изучавшего сигналы, которые помогают сперматозоидам млекопитающих двигаться к яйцеклетке. Стоун, который часто сотрудничает с коллегами из инженерных и естественных наук, говорит, что смешение знаний из разных дисциплин часто приводит к замечательным результатам.
25.01.2024 |
Хайтек
Applied Physics Express: Изобретен компактный лазер для дезинфекции | |
Первый в мире компактный синий полупровод... |
Ученые ЮУрГУ создают ковалентные каркасы — новый материал для оптики | |
Новые вещества под названием ковалентные ... |
Нагреватель будущего: как разработка студента МФТИ изменит наноэлектронику | |
Студент магистратуры Московского физико-технич... |
Выяснилось, что композиты с древесиной лучше выдерживают высокие температуры | |
Ученые из Российского экономического унив... |
Излучение 5G меняет ткани мозга крыс, но решать, плохо это или хорошо, пока рано | |
Ученые ТГУ провели эксперимент и про... |
Робот с винтовым двигателем сможет добывать полезные ископаемые на Луне | |
Экспериментальный робот показал, что може... |
Ученые создали элементы системы управления синхротронным пучком для СКИФа | |
Сотрудники университета и ученые из ... |
PNAS: Создан реактор для безопасной добычи лития из соляных растворов | |
Новое устройство, которое позволяет добывать л... |
Nature: Ученые исследуют строение ядер химических элементов с помощью лазеров | |
Группа ученых из разных стран попыталась ... |
Nature Nanotechnology: Новый материал охлаждает на 72% лучше любых термопаст | |
В местах, где хранятся и обрабатываю... |
NatComm: Учёные приблизились к созданию биополимеров, реагирующих на воду | |
Новый подход для понимания и предска... |
В Челябинске разрабатывают инновационное оборудование для вибрационных испытаний | |
Специалисты ЮУрГУ совместно с Уральским и... |
В ТПУ создали многоразовые накопители водорода из отечественного сырья | |
Более дешевые металлогидридные накопители водо... |
Новый подход к производству цифрового света решает проблемы 3D-печати | |
Новый метод производства цифрового света для&n... |
AEM: Гибридный полупроводник позволит лучше понять спинтронику | |
Электроны вращаются без электрического за... |
Томские ученые представили цифровое решение для оптимизации НПЗ | |
Новый программный комплекс представили ученые ... |
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью | |
Методику создания синтетических данных для&nbs... |
Численное моделирование повысит эффективность 3D-печати из стали 316LSi | |
Морская нержавейка, или сталь 316LSi, шир... |
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей | |
Новый сплав на основе алюминия создали ис... |
В НГУ разработали первые фильтры для технологии связи 6G | |
Уникальные фильтры для импульсной терагер... |
Nat. Nanotechnol: Разработан самоочищающийся электрод для синтеза пероксидов | |
Пероксиды металлов — MO₂, M=Ca, Sr,... |
В СПбГУ создали новые биоактивные молекулы с помощью золотого катализатора | |
Метод соединения двух простых веществ с п... |
AFM: Разработан материал для поглощения электромагнитных волн широкого спектра | |
Ультратонкий пленочный композитный материал, с... |
PRL: Доказана возможность открытия новых сверхтяжелых элементов | |
Уран — самый тяжелый из извест... |
NE: Новый жидкостный акустический датчик распознаёт голоса в шумной обстановке | |
Инженеры разработали множество сложных датчико... |
Science: Новый метод спектроскопии раскрывает квантовые секреты воды | |
Вода — это жизнь. Но водо... |
В ИРНИТУ создали первую партию инклинометров и объединили их в умную сеть | |
Сотрудники Центра маркшейдерских и геодез... |
Ученые УУНиТ создали первый отечественный станок для сухого электрополирования | |
Ученые Уфимского университета науки и тех... |
Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет | |
Физическая модель, которая описывает взаимодей... |
Новый метод синтеза лекарств открыли российские химики | |
Новый метод синтеза производных пирролизидина ... |