Создано доступное и экологичное решение для плоских дисплеев и носимой техники

Исследовательская группа под руководством Национальной лаборатории Лоуренса Беркли, Berkeley Lab, разработала супрамолекулярные чернила — новую технологию для использования в OLED-дисплеях, то есть дисплеях на основе органических светодиодов, и других электронных устройствах.

Изготовленные из недорогих элементов, распространенных на Земле, вместо дорогостоящих дефицитных металлов, супрамолекулярные чернила могут обеспечить более доступные и экологически устойчивые плоские экраны и электронные устройства.

«Заменив драгоценные металлы на распространенные на Земле материалы, наша технология супрамолекулярных чернил может стать переломным моментом в индустрии OLED-дисплеев», — говорит главный исследователь Пейдонг Янг, старший научный сотрудник Отдела материаловедения Лаборатории Беркли и профессор химии, материаловедения и инженерии Калифорнийского университета в Беркли. „Что еще более интересно, так это то, что технология может распространиться и на органические печатные пленки для изготовления носимых устройств, а также люминесцентных произведений искусства и скульптур“, — добавил он.

Если у вас есть относительно новый смартфон или телевизор с плоской панелью, велика вероятность, что он оснащен OLED-экраном. OLED-дисплеи стремительно развиваются на рынке дисплеев, потому что они легче, тоньше, потребляют меньше энергии и имеют лучшее качество изображения, чем другие плоские панели. Это объясняется тем, что OLED содержат крошечные органические молекулы, которые излучают свет напрямую, устраняя необходимость в дополнительном слое подсветки, который присутствует в жидкокристаллических дисплеях (LCD). Однако в состав OLED могут входить редкие и дорогие металлы, такие как иридий.

Но с новым материалом, который команда Лаборатории Беркли недавно описала в новом исследовании, опубликованном в журнале Science, производители электронных дисплеев могут перейти на более дешевый процесс производства, который также требует гораздо меньше энергии, чем традиционные методы.

Новый материал состоит из порошков гафния (Hf) и циркония (Zr), которые можно смешивать в растворе при низких температурах — от комнатной до примерно 176 градусов по Фаренгейту (80 градусов по Цельсию) — для получения полупроводниковых «чернил».

Крошечные молекулярные структуры «строительных блоков» внутри чернил самособираются в растворе — этот процесс исследователи называют супрамолекулярной сборкой.

Наш подход можно сравнить со строительством из блоков LEGO, — говорит Ченг Чжу, соавтор статьи и кандидат наук в области материаловедения и инженерии в Калифорнийском университете в Беркли.

Эти супрамолекулярные структуры позволяют материалу достигать стабильного и высокочистого синтеза при низких температурах.

Чжу разработал материал, работая в качестве научного сотрудника Отдела материаловедения Лаборатории Беркли и аспиранта-исследователя в группе Пейдонга Янга в Лаборатории Беркли и Калифорнийском университете в Беркли.

Эксперименты по спектроскопии в Калифорнийском университете в Беркли показали, что супрамолекулярные чернила являются высокоэффективными излучателями синего и зеленого света — два признака потенциального применения материала в качестве энергоэффективного OLED-эмиттера в электронных дисплеях и 3D-печати.

Последующие оптические эксперименты показали, что супрамолекулярные чернильные композиты, излучающие синий и зеленый свет, демонстрируют то, что ученые называют квантовой эффективностью, близкой к единице.

Это свидетельствует об их исключительной способности преобразовывать почти весь поглощенный свет в видимый в процессе эмиссии, — пояснил Чжу.

Чтобы продемонстрировать возможность перестройки цвета и люминесценции материала в качестве OLED-эмиттера, исследователи изготовили из композитных чернил прототип тонкопленочного дисплея. В результате они обнаружили, что материал подходит для программируемых электронных дисплеев.

Алфавитный фильм служит убедительным примером, иллюстрирующим применение эмиссионных тонких пленок, таких как супрамолекулярные чернила, для создания быстро переключающихся дисплеев, — говорит Чжу.

Дополнительные эксперименты в Калифорнийском университете в Беркли показали, что супрамолекулярные чернила также совместимы с технологиями 3D-печати, например, для создания декоративного OLED-освещения.

Чжу добавил, что производители также могут использовать супрамолекулярные чернила для изготовления носимых устройств или высокотехнологичной одежды, которая подсвечивается для обеспечения безопасности в условиях низкой освещенности, или носимых устройств, которые отображают информацию с помощью супрамолекулярных светоизлучающих структур.

Супрамолекулярные чернила — еще одна демонстрация лаборатории Пейдонга Янга новых устойчивых материалов, которые могут обеспечить экономичное и энергоэффективное производство полупроводников. В прошлом году Янг и его команда сообщили о новых «многоэлементных чернилах» — первом „высокоэнтропийном“ полупроводнике, который можно обрабатывать при низкой или комнатной температуре.

Благодаря продемонстрированной стабильности и сроку хранения супрамолекулярные чернила могут также помочь в коммерческом продвижении ионно-галоидных перовскитов — тонкопленочных солнечных материалов, на которые уже несколько десятилетий обращает внимание индустрия дисплеев.

Благодаря низкотемпературному синтезу в растворе ионно-галоидные перовскиты могут стать потенциально более дешевым производственным процессом для изготовления дисплеев. Однако высокоэффективные галогенидные перовскиты содержат элемент свинец, который представляет опасность для окружающей среды и здоровья населения. В отличие от них, новые супрамолекулярные чернила, принадлежащие к семейству ионных галогенидных перовскитов, предлагают бессвинцовую формулу без ущерба для производительности.

Теперь, когда они успешно продемонстрировали потенциал супрамолекулярных чернил в тонких пленках OLED и 3D-печатной электронике, исследователи изучают электролюминесцентный потенциал материала.

Это предполагает целенаправленное и специализированное исследование того, насколько хорошо наши материалы могут излучать свет с помощью электрического возбуждения, — заключает Чжу.

Этот шаг необходим для понимания всего потенциала нашего материала для создания эффективных светоизлучающих устройств.

22.01.2024


Подписаться в Telegram



Хайтек

AEM: Гибридный полупроводник позволит лучше понять спинтронику
AEM: Гибридный полупроводник позволит лучше понять спинтронику

Электроны вращаются без электрического за...

Томские ученые представили цифровое решение для оптимизации НПЗ
Томские ученые представили цифровое решение для оптимизации НПЗ

Новый программный комплекс представили ученые ...

В НГУ разработали первые фильтры для технологии связи 6G
В НГУ разработали первые фильтры для технологии связи 6G

Уникальные фильтры для импульсной терагер...

Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет
Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет

Физическая модель, которая описывает взаимодей...

Новый метод синтеза лекарств открыли российские химики
Новый метод синтеза лекарств открыли российские химики

Новый метод синтеза производных пирролизидина ...

Advanced Materials: Созданы волокна в одежду для питания смартфона от тепла тела
Advanced Materials: Созданы волокна в одежду для питания смартфона от тепла тела

Термоэлектрический материал, который можно исп...

В Томском университете создали интегральные схемы для российских РЛС
В Томском университете создали интегральные схемы для российских РЛС

Первый российский комплект интегральных схем д...

Physical Review C: Синтезирован новый изотоп плутония
Physical Review C: Синтезирован новый изотоп плутония

Физики из Китая выяснили, что период...

Поиск на сайте

Знатоки клуба инноваций


ТОП - Новости мира, инновации

Российские ученые предложили использовать вирус растений для лечения саркомы
Российские ученые предложили использовать вирус растений для лечения саркомы
Menopause: Ученые заподозрили роль эстрогена в развитии астмы
Menopause: Ученые заподозрили роль эстрогена в развитии астмы
AEM: Гибридный полупроводник позволит лучше понять спинтронику
AEM: Гибридный полупроводник позволит лучше понять спинтронику
FCoSc: Гигантские крысы поборются с незаконной торговлей дикими животными
FCoSc: Гигантские крысы поборются с незаконной торговлей дикими животными
В России разработали искусственные кости и новые методы лечения позвоночника
В России разработали искусственные кости и новые методы лечения позвоночника
TE&E: Животные потребляют алкоголь чаще, чем мы думаем
TE&E: Животные потребляют алкоголь чаще, чем мы думаем
Волнообразные упражнения со штангой: польза или вред
Волнообразные упражнения со штангой: польза или вред
JA&FC: Сорго обогащает рацион питания биоактивными соединениями
JA&FC: Сорго обогащает рацион питания биоактивными соединениями
Nature Communications: Жизнь все-таки можно повернуть назад
Nature Communications: Жизнь все-таки можно повернуть назад
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью
EBioMedicine: Создан инструмент для выявления сепсиса у новорожденных
EBioMedicine: Создан инструмент для выявления сепсиса у новорожденных
Численное моделирование повысит эффективность 3D-печати из стали 316LSi
Численное моделирование повысит эффективность 3D-печати из стали 316LSi
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей
Влияние цвета в архитектуре на самоконтроль человека: мнение эксперта МХПИ
Влияние цвета в архитектуре на самоконтроль человека: мнение эксперта МХПИ
Томские ученые представили цифровое решение для оптимизации НПЗ
Томские ученые представили цифровое решение для оптимизации НПЗ

Новости компаний, релизы

Международные эксперты оценили разработанную для нижегородского завода технологию
Регистрация сми на IV конгресс молодых ученых продлевается до 6 ноября
Фестиваль научных театров «Наука всем!» прошёл в Санкт-Петербурге
На старт! Внимание! MITEX!
Пироговская олимпиада для школьников по химии и биологии