Ученые, работающие над экспериментом Dark SRF в Национальной ускорительной лаборатории имени Ферми Министерства энергетики США, продемонстрировали беспрецедентную чувствительность экспериментальной установки, используемой для поиска теоретически возможных частиц, называемых темными фотонами. Исследователи удерживали обычные безмассовые фотоны в устройствах, называемых сверхпроводящими радиочастотными резонаторами, для поиска перехода этих фотонов в их гипотетические аналоги из темного сектора. Эксперимент позволил установить наилучшее в мире ограничение на существование темного фотона в определенном диапазоне масс, о чем недавно был опубликован материал в журнале Physical Review Letters.
Свет, который позволяет нам видеть обычную материю в нашем мире, состоит из частиц, называемых фотонами. Но обычная материя составляет лишь малую часть всей материи. Наша Вселенная заполнена неизвестной субстанцией, называемой темной материей, которая составляет 85% всей материи. Стандартная модель, описывающая известные частицы и силы, является неполной. В самом простом варианте теоретиков один неоткрытый тип частиц темной материи мог бы объяснить всю темную материю во Вселенной. Однако многие ученые подозревают, что темный сектор во Вселенной состоит из множества различных частиц и сил, одни из которых могут иметь скрытые взаимодействия с частицами и силами обычной материи. Подобно тому, как у электрона есть копии, отличающиеся друг от друга, в том числе мюон и тау, темный фотон будет отличаться от обычного фотона и обладать массой. Теоретически, после получения фотоны и темные фотоны могут превращаться друг в друга с определенной скоростью, задаваемой свойствами темного фотона. Инновационное использование SRF-полостейДля поиска темных фотонов исследователи проводят экспериментпод названием «свет сквозь стену». Для обнаружения превращения обычного фотона в фотон темной материи используются две полые металлические полости. В одной полости ученые хранят обычные фотоны, а другую полость оставляют пустой. Затем ученые отслеживают появление фотонов в пустой полости. Исследователи Фермилаба, работающие в Центре SQMS, имеют многолетний опыт работы с SRF-полостями, которые используются в основном в ускорителях частиц. Теперь сотрудники Центра SQMS стали использовать SRF-полости для других целей, таких как квантовые вычисления и поиск темной материи, благодаря их способности хранить и использовать электромагнитную энергию с высокой эффективностью.
Этот эксперимент является первой демонстрацией использования SRF-полостей для проведения эксперимента по просвечиванию стен. SRF-полости, используемые Романенко и его сотрудниками, представляют собой полые куски ниобия. При охлаждении до сверхнизких температур эти полости очень хорошо сохраняют фотоны, или пакеты электромагнитной энергии. Для эксперимента Dark SRF ученые охладили полости SRF в ванне с жидким гелием до температуры около 2 К, близкой к абсолютному нулю. При такой температуре электромагнитная энергия легко проходит через ниобий, что делает эти полости эффективными для хранения фотонов. Мы разрабатывали различные схемы, пытаясь справиться с новыми возможностями и проблемами, которые открывают высококачественные сверхпроводящие полости для эксперимента «свет сквозь стену», — сказал соавтор исследования Чжэнь Лю, член группы по физике и сенсорике Центра SQMS из Университета Миннесоты. Теперь исследователи могут использовать резонаторы SRF с различными резонансными частотами, чтобы охватить различные части потенциального диапазона масс темных фотонов. Это связано с тем, что пиковая чувствительность по массе темного фотона напрямую зависит от частоты обычных фотонов, хранящихся в одной из SRF-полостей.
«Эксперимент Dark SRF проложил путь к новому классу экспериментов, проводимых в Центре SQMS, где эти полости с очень высоким коэффициентом добротности используются в качестве чрезвычайно чувствительных детекторов», — заключила Анна Грасселлино, директор Центра SQMS и соисполнитель эксперимента. „От поиска темной материи и гравитационных волн до фундаментальных тестов квантовой механики — эти самые высокоэффективные в мире резонаторы помогут нам обнаружить намеки на новую физику“. 21.07.2023 |
Хайтек
Applied Physics Express: Изобретен компактный лазер для дезинфекции | |
Первый в мире компактный синий полупровод... |
Ученые ЮУрГУ создают ковалентные каркасы — новый материал для оптики | |
Новые вещества под названием ковалентные ... |
Нагреватель будущего: как разработка студента МФТИ изменит наноэлектронику | |
Студент магистратуры Московского физико-технич... |
Выяснилось, что композиты с древесиной лучше выдерживают высокие температуры | |
Ученые из Российского экономического унив... |
Излучение 5G меняет ткани мозга крыс, но решать, плохо это или хорошо, пока рано | |
Ученые ТГУ провели эксперимент и про... |
Робот с винтовым двигателем сможет добывать полезные ископаемые на Луне | |
Экспериментальный робот показал, что може... |
Ученые создали элементы системы управления синхротронным пучком для СКИФа | |
Сотрудники университета и ученые из ... |
PNAS: Создан реактор для безопасной добычи лития из соляных растворов | |
Новое устройство, которое позволяет добывать л... |
Nature: Ученые исследуют строение ядер химических элементов с помощью лазеров | |
Группа ученых из разных стран попыталась ... |
Nature Nanotechnology: Новый материал охлаждает на 72% лучше любых термопаст | |
В местах, где хранятся и обрабатываю... |
NatComm: Учёные приблизились к созданию биополимеров, реагирующих на воду | |
Новый подход для понимания и предска... |
В Челябинске разрабатывают инновационное оборудование для вибрационных испытаний | |
Специалисты ЮУрГУ совместно с Уральским и... |
В ТПУ создали многоразовые накопители водорода из отечественного сырья | |
Более дешевые металлогидридные накопители водо... |
Новый подход к производству цифрового света решает проблемы 3D-печати | |
Новый метод производства цифрового света для&n... |
AEM: Гибридный полупроводник позволит лучше понять спинтронику | |
Электроны вращаются без электрического за... |
Томские ученые представили цифровое решение для оптимизации НПЗ | |
Новый программный комплекс представили ученые ... |
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью | |
Методику создания синтетических данных для&nbs... |
Численное моделирование повысит эффективность 3D-печати из стали 316LSi | |
Морская нержавейка, или сталь 316LSi, шир... |
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей | |
Новый сплав на основе алюминия создали ис... |
В НГУ разработали первые фильтры для технологии связи 6G | |
Уникальные фильтры для импульсной терагер... |
Nat. Nanotechnol: Разработан самоочищающийся электрод для синтеза пероксидов | |
Пероксиды металлов — MO₂, M=Ca, Sr,... |
В СПбГУ создали новые биоактивные молекулы с помощью золотого катализатора | |
Метод соединения двух простых веществ с п... |
AFM: Разработан материал для поглощения электромагнитных волн широкого спектра | |
Ультратонкий пленочный композитный материал, с... |
PRL: Доказана возможность открытия новых сверхтяжелых элементов | |
Уран — самый тяжелый из извест... |
NE: Новый жидкостный акустический датчик распознаёт голоса в шумной обстановке | |
Инженеры разработали множество сложных датчико... |
Science: Новый метод спектроскопии раскрывает квантовые секреты воды | |
Вода — это жизнь. Но водо... |
В ИРНИТУ создали первую партию инклинометров и объединили их в умную сеть | |
Сотрудники Центра маркшейдерских и геодез... |
Ученые УУНиТ создали первый отечественный станок для сухого электрополирования | |
Ученые Уфимского университета науки и тех... |
Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет | |
Физическая модель, которая описывает взаимодей... |
Новый метод синтеза лекарств открыли российские химики | |
Новый метод синтеза производных пирролизидина ... |