Исследователи из Национального института стандартов и технологий, NIST, и их коллеги создали сверхпроводящую однофотонную камеру со сверхвысоким разрешением 400 000 пикселей — в 400 раз больше, чем любое другое устройство подобного типа. Такие камеры позволяют ученым фиксировать очень слабые световые сигналы, как от удаленных объектов в космосе, так и от частей человеческого мозга. Большее количество пикселей может открыть множество новых применений в науке и биомедицинских исследованиях. Камера NIST состоит из решеток сверхтонких электрических проводов, охлажденных до температуры, близкой к абсолютному нулю, в которых ток движется без сопротивления до тех пор, пока в провод не попадает фотон. В этих сверхпроводяще-нанопроволочных камерах энергия, передаваемая даже одним фотоном, может быть обнаружена, поскольку он отключает сверхпроводимость в определенном месте (пикселе) решетки. Сочетание расположения и интенсивности всех фотонов формирует изображение. Первые сверхпроводящие камеры, способные улавливать одиночные фотоны, были разработаны более 20 лет назад. С тех пор эти устройства содержали не более нескольких тысяч пикселей — слишком мало для большинства применений. Создание сверхпроводящей камеры с большим числом пикселей представляет собой серьезную проблему, поскольку подключить каждый охлажденный пиксель из многих тысяч к собственному считывающему проводу становится практически невозможно. Проблема связана с тем, что для нормальной работы каждый из сверхпроводящих компонентов камеры должен быть охлажден до сверхнизких температур, и индивидуальное подключение каждого пикселя из миллионов к системе охлаждения практически невозможно. Исследователи NIST Адам Маккоган и Бахром Орипов, а также их коллеги из Лаборатории реактивного движения НАСА в Пасадене (Калифорния) и Университета Колорадо в Боулдере преодолели это препятствие, объединив сигналы от множества пикселей на нескольких проводах считывания при комнатной температуре. Общее свойство любого сверхпроводящего провода заключается в том, что он свободно пропускает ток до определенного максимального «критического» тока. Чтобы воспользоваться этим свойством, исследователи подали на датчики ток чуть ниже максимального. При этом, если на пиксель попадает хотя бы один фотон, сверхпроводимость разрушается. Ток больше не может протекать без сопротивления через нанопроволоку и вместо этого шунтируется небольшим резистивным нагревательным элементом, подключенным к каждому пикселю. Шунтированный ток создает электрический сигнал, который может быть быстро обнаружен. Заимствуя существующие технологии, специалисты NIST создали камеру с пересекающимися массивами сверхпроводящих нанопроводов, которые образуют несколько рядов и столбцов, как в игре «Крестики-нолики». Каждый пиксель — крошечная область, расположенная в точке пересечения отдельных вертикальных и горизонтальных нанопроводов, — однозначно определяется строкой и столбцом, в которых он находится. Такое расположение позволило не регистрировать данные от каждого пикселя, а измерять сигналы, поступающие от целого ряда или столбца пикселей одновременно, что значительно сократило количество считывающих проводов. Для этого сверхпроводящий провод считывания располагался параллельно рядам пикселей, но не касался их, а другой провод — параллельно столбцам, но не касался их. Рассмотрим только сверхпроводящий считывающий провод, расположенный параллельно строкам. Когда фотон попадает на пиксель, ток, шунтируемый в резистивный нагревательный элемент, нагревает небольшую часть считывающего провода, создавая крошечную горячую точку. Горячая точка, в свою очередь, генерирует два импульса напряжения, проходящих в противоположных направлениях вдоль считывающего провода, которые регистрируются детекторами на обоих концах. Разница во времени прихода импульсов к конечным детекторам позволяет определить столбец, в котором находится пиксель. Второй сверхпроводящий провод считывания, расположенный параллельно столбцам, выполняет аналогичную функцию. Детекторы могут различать разницу во времени прихода сигналов, составляющую 50 триллионных долей секунды. Они также могут подсчитывать до 100 000 фотонов в секунду, попадающих на решетку. После того как команда перешла на новую архитектуру считывания, Орипов быстро увеличил количество пикселей. За несколько недель количество пикселей увеличилось с 20 000 до 400 000. По словам МакКогана, технология считывания может быть легко масштабирована для создания еще более крупных камер, и в скором времени может появиться сверхпроводящая однофотонная камера с десятками или сотнями миллионов пикселей. В течение следующего года команда планирует повысить чувствительность прототипа камеры, чтобы она могла фиксировать практически каждый входящий фотон. Это позволит использовать камеру в таких малоосвещенных областях, как съемка слабых галактик или планет, расположенных за пределами Солнечной системы, измерение света в квантовых компьютерах на основе фотонов, а также в биомедицинских исследованиях, использующих ближний инфракрасный свет для проникновения в ткани человека. О своей работе исследователи сообщили в выпуске журнала Nature от 26 октября. 25.10.2023 |
Хайтек
Applied Physics Express: Изобретен компактный лазер для дезинфекции | |
Первый в мире компактный синий полупровод... |
Ученые ЮУрГУ создают ковалентные каркасы — новый материал для оптики | |
Новые вещества под названием ковалентные ... |
Нагреватель будущего: как разработка студента МФТИ изменит наноэлектронику | |
Студент магистратуры Московского физико-технич... |
Выяснилось, что композиты с древесиной лучше выдерживают высокие температуры | |
Ученые из Российского экономического унив... |
Излучение 5G меняет ткани мозга крыс, но решать, плохо это или хорошо, пока рано | |
Ученые ТГУ провели эксперимент и про... |
Робот с винтовым двигателем сможет добывать полезные ископаемые на Луне | |
Экспериментальный робот показал, что може... |
Ученые создали элементы системы управления синхротронным пучком для СКИФа | |
Сотрудники университета и ученые из ... |
PNAS: Создан реактор для безопасной добычи лития из соляных растворов | |
Новое устройство, которое позволяет добывать л... |
Nature: Ученые исследуют строение ядер химических элементов с помощью лазеров | |
Группа ученых из разных стран попыталась ... |
Nature Nanotechnology: Новый материал охлаждает на 72% лучше любых термопаст | |
В местах, где хранятся и обрабатываю... |
NatComm: Учёные приблизились к созданию биополимеров, реагирующих на воду | |
Новый подход для понимания и предска... |
В Челябинске разрабатывают инновационное оборудование для вибрационных испытаний | |
Специалисты ЮУрГУ совместно с Уральским и... |
В ТПУ создали многоразовые накопители водорода из отечественного сырья | |
Более дешевые металлогидридные накопители водо... |
Новый подход к производству цифрового света решает проблемы 3D-печати | |
Новый метод производства цифрового света для&n... |
AEM: Гибридный полупроводник позволит лучше понять спинтронику | |
Электроны вращаются без электрического за... |
Томские ученые представили цифровое решение для оптимизации НПЗ | |
Новый программный комплекс представили ученые ... |
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью | |
Методику создания синтетических данных для&nbs... |
Численное моделирование повысит эффективность 3D-печати из стали 316LSi | |
Морская нержавейка, или сталь 316LSi, шир... |
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей | |
Новый сплав на основе алюминия создали ис... |
В НГУ разработали первые фильтры для технологии связи 6G | |
Уникальные фильтры для импульсной терагер... |
Nat. Nanotechnol: Разработан самоочищающийся электрод для синтеза пероксидов | |
Пероксиды металлов — MO₂, M=Ca, Sr,... |
В СПбГУ создали новые биоактивные молекулы с помощью золотого катализатора | |
Метод соединения двух простых веществ с п... |
AFM: Разработан материал для поглощения электромагнитных волн широкого спектра | |
Ультратонкий пленочный композитный материал, с... |
PRL: Доказана возможность открытия новых сверхтяжелых элементов | |
Уран — самый тяжелый из извест... |
NE: Новый жидкостный акустический датчик распознаёт голоса в шумной обстановке | |
Инженеры разработали множество сложных датчико... |
Science: Новый метод спектроскопии раскрывает квантовые секреты воды | |
Вода — это жизнь. Но водо... |
В ИРНИТУ создали первую партию инклинометров и объединили их в умную сеть | |
Сотрудники Центра маркшейдерских и геодез... |
Ученые УУНиТ создали первый отечественный станок для сухого электрополирования | |
Ученые Уфимского университета науки и тех... |
Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет | |
Физическая модель, которая описывает взаимодей... |
Новый метод синтеза лекарств открыли российские химики | |
Новый метод синтеза производных пирролизидина ... |