Ученые Томского политехнического университета вместе с коллегами из Национального университета Ян Мин Чао Тунга, Тайвань, предложили концепцию новой оптической ловушки так называемого бутылочного типа. Ученые показали, что вместо линзы могут быть применены два диэлектрических микробруска. В отличие от аналогов, такую ловушку в перспективе можно будет применять в «лаборатории на чипе» — миниатюрном приборе, позволяющем проводить различные, в том числе биохимические, исследования на чипе (кристалле) в несколько квадратных миллиметров. Это значительно расширит возможности миниатюрных лабораторий. Результаты исследования опубликованы в журнале Optics Letters (IF: 3,866; Q1). Оптическую ловушку также называют оптической капсулой. Это устройство, которое с помощью лазерного пучка улавливает объекты микронного размера, не нарушая их внутреннюю структуру. Это могут быть, например, живые клетки, белки, молекулы. Принцип работы известных оптических капсул обычно основан на использовании сложно структурированных пучков. Авторы исследования предложили безлинзовый метод формирования оптической микрокапсулы. Замкнутая область локализации поля в данном случае создается при помощи двух диэлетрических брусков, размеры которых сравнимы с длиной световой волны. Если подсветить их с «торцевой стороны» светом с плоским фронтом, „на выходе“ формируется область локализации светового поля. При правильном выборе параметров брусков образуется замкнутая область, своеобразный эллипс: по краям интенсивность электрического поля большая, внутри — нулевая. За этот барьер наночастицы „выскочить“ не могут. Получается оптическая капсула. Моделирование процесса и расчеты проводились на основе решения уравнений Максвелла. В качестве образца для расчетов были взяты наночастицы золота. Золото – классическое вещество для решения подобных задач, и для выбранной длины волны наночастицы золота являются поглощающими частицами.
На следующем этапе исследования — экспериментальном — ученые проверят концепцию на практике. Безлинзовые оптические ловушки могут применяться в медицине, биологии, а также при синтезе новых материалов. 07.02.2022 |
Хайтек
Applied Physics Express: Изобретен компактный лазер для дезинфекции | |
Первый в мире компактный синий полупровод... |
Ученые ЮУрГУ создают ковалентные каркасы — новый материал для оптики | |
Новые вещества под названием ковалентные ... |
Нагреватель будущего: как разработка студента МФТИ изменит наноэлектронику | |
Студент магистратуры Московского физико-технич... |
Выяснилось, что композиты с древесиной лучше выдерживают высокие температуры | |
Ученые из Российского экономического унив... |
Излучение 5G меняет ткани мозга крыс, но решать, плохо это или хорошо, пока рано | |
Ученые ТГУ провели эксперимент и про... |
Робот с винтовым двигателем сможет добывать полезные ископаемые на Луне | |
Экспериментальный робот показал, что може... |
Ученые создали элементы системы управления синхротронным пучком для СКИФа | |
Сотрудники университета и ученые из ... |
PNAS: Создан реактор для безопасной добычи лития из соляных растворов | |
Новое устройство, которое позволяет добывать л... |
Nature: Ученые исследуют строение ядер химических элементов с помощью лазеров | |
Группа ученых из разных стран попыталась ... |
Nature Nanotechnology: Новый материал охлаждает на 72% лучше любых термопаст | |
В местах, где хранятся и обрабатываю... |
NatComm: Учёные приблизились к созданию биополимеров, реагирующих на воду | |
Новый подход для понимания и предска... |
В Челябинске разрабатывают инновационное оборудование для вибрационных испытаний | |
Специалисты ЮУрГУ совместно с Уральским и... |
В ТПУ создали многоразовые накопители водорода из отечественного сырья | |
Более дешевые металлогидридные накопители водо... |
Новый подход к производству цифрового света решает проблемы 3D-печати | |
Новый метод производства цифрового света для&n... |
AEM: Гибридный полупроводник позволит лучше понять спинтронику | |
Электроны вращаются без электрического за... |
Томские ученые представили цифровое решение для оптимизации НПЗ | |
Новый программный комплекс представили ученые ... |
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью | |
Методику создания синтетических данных для&nbs... |
Численное моделирование повысит эффективность 3D-печати из стали 316LSi | |
Морская нержавейка, или сталь 316LSi, шир... |
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей | |
Новый сплав на основе алюминия создали ис... |
В НГУ разработали первые фильтры для технологии связи 6G | |
Уникальные фильтры для импульсной терагер... |
Nat. Nanotechnol: Разработан самоочищающийся электрод для синтеза пероксидов | |
Пероксиды металлов — MO₂, M=Ca, Sr,... |
В СПбГУ создали новые биоактивные молекулы с помощью золотого катализатора | |
Метод соединения двух простых веществ с п... |
AFM: Разработан материал для поглощения электромагнитных волн широкого спектра | |
Ультратонкий пленочный композитный материал, с... |
PRL: Доказана возможность открытия новых сверхтяжелых элементов | |
Уран — самый тяжелый из извест... |
NE: Новый жидкостный акустический датчик распознаёт голоса в шумной обстановке | |
Инженеры разработали множество сложных датчико... |
Science: Новый метод спектроскопии раскрывает квантовые секреты воды | |
Вода — это жизнь. Но водо... |
В ИРНИТУ создали первую партию инклинометров и объединили их в умную сеть | |
Сотрудники Центра маркшейдерских и геодез... |
Ученые УУНиТ создали первый отечественный станок для сухого электрополирования | |
Ученые Уфимского университета науки и тех... |
Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет | |
Физическая модель, которая описывает взаимодей... |
Новый метод синтеза лекарств открыли российские химики | |
Новый метод синтеза производных пирролизидина ... |