Учёные из Санкт-Петербургского университета создали новые соединения из лантаноидов. Благодаря улучшению ключевых свойств, эти соединения могут быть использованы для производства люминесцентных красок, защитных элементов документов, датчиков и экранов различных устройств. Металлорганические каркасные структуры (МОКС) — это класс кристаллических пористых материалов. Они состоят из металлических ионов или кластеров, связанных органическими мостиковыми лигандами. Благодаря разнообразию комбинаций металлов и лигандов можно получать материалы с разными свойствами. Сейчас соединения на основе МОКС используют при производстве сенсоров, как катализаторы реакций и присадки к ракетному топливу, а также в качестве люминофоров — веществ, излучающих свет под воздействием ультрафиолета, электромагнитного поля или других факторов. Учёные Санкт-Петербургского университета исследуют материалы на основе соединений лантаноидов. Они уже выяснили, как меняются форма и размер наночастиц в тераностике при добавлении различных лантаноидов. Химики Университета продолжают изучать и применять лантаноиды. Лантаноиды — это 15 химических элементов III группы 6-го периода периодической таблицы. Это металлы с атомными номерами от 57 до 71 (от лантана до лютеция). Исследователи отмечают, что у ионов лантаноидов очень узкие линии спектра излучения. Из-за этого соединения лантаноидов могут быть использованы для создания новых ярких и контрастных люминесцентных красок и экранов мониторов. Ионы плохо поглощают свет, но их можно объединить с органическим соединением, которое хорошо поглощает свет и передаёт его энергию иону. При правильном подборе условий такие гибриды будут светиться не менее ярко, чем полностью органические люминофоры, а цвет свечения будет более насыщенным и контрастным. Новые люминесцентные металлорганические каркасные структуры могут использоваться в различных областях, таких как создание защитных элементов документов, датчиков, элементов экранов гаджетов и химических соединений для выявления опасных веществ. Для синтеза использовались два иона: один люминесцентный (европий или тербий), а другой оптически инертный (иттрий, лантан, гадолиний или лютеций). Размер частиц удалось уменьшить благодаря применению ультразвука. Полученные МОКС имеют большую удельную поверхность, что важно при разработке люминесцентных сенсоров.
Учёные СПбГУ нашли способ увеличить яркость свечения более чем в два раза. Для этого нужно частично заменить ионы европия и тербия на ионы гадолиния и лютеция. В одном соединении, содержащем ионы тербия и лютеция в соотношении 1:9, квантовый выход составил 95%. То есть из 100 частиц, поглотивших ультрафиолетовый свет, 95 частиц испустили зелёный свет. Специалисты Университета синтезировали и изучили новые соединения. Они также проанализировали, как связаны между собой структура, оптические и фотофизические свойства на уровне электронной структуры. Химики СПбГУ предложили новый способ оценки процессов передачи световой энергии возбуждения на молекулярном уровне. Выяснилось, что квантовый выход люминесценции антенных комплексов зависит от двух параметров: насколько эффективно энергия передаётся с антенны на ион европия или тербия и насколько сильно тушится люминесценция ионов лантаноидов другими молекулами (например, молекулами воды в составе соединений).
Новый подход будет полезен для изучения металлорганических каркасов с антенным механизмом передачи энергии. В дальнейшем они планируют использовать этот метод для исследования других подобных структур. Результаты исследования опубликованы в цикле статей в научном журнале Molecules. Изображение пресс-службе СПбГУ предоставил Андрей Мерещенко 13.09.2024 |
Хайтек
Applied Physics Express: Изобретен компактный лазер для дезинфекции | |
Первый в мире компактный синий полупровод... |
Ученые ЮУрГУ создают ковалентные каркасы — новый материал для оптики | |
Новые вещества под названием ковалентные ... |
Нагреватель будущего: как разработка студента МФТИ изменит наноэлектронику | |
Студент магистратуры Московского физико-технич... |
Выяснилось, что композиты с древесиной лучше выдерживают высокие температуры | |
Ученые из Российского экономического унив... |
Излучение 5G меняет ткани мозга крыс, но решать, плохо это или хорошо, пока рано | |
Ученые ТГУ провели эксперимент и про... |
Робот с винтовым двигателем сможет добывать полезные ископаемые на Луне | |
Экспериментальный робот показал, что може... |
Ученые создали элементы системы управления синхротронным пучком для СКИФа | |
Сотрудники университета и ученые из ... |
PNAS: Создан реактор для безопасной добычи лития из соляных растворов | |
Новое устройство, которое позволяет добывать л... |
Nature: Ученые исследуют строение ядер химических элементов с помощью лазеров | |
Группа ученых из разных стран попыталась ... |
Nature Nanotechnology: Новый материал охлаждает на 72% лучше любых термопаст | |
В местах, где хранятся и обрабатываю... |
NatComm: Учёные приблизились к созданию биополимеров, реагирующих на воду | |
Новый подход для понимания и предска... |
В Челябинске разрабатывают инновационное оборудование для вибрационных испытаний | |
Специалисты ЮУрГУ совместно с Уральским и... |
В ТПУ создали многоразовые накопители водорода из отечественного сырья | |
Более дешевые металлогидридные накопители водо... |
Новый подход к производству цифрового света решает проблемы 3D-печати | |
Новый метод производства цифрового света для&n... |
AEM: Гибридный полупроводник позволит лучше понять спинтронику | |
Электроны вращаются без электрического за... |
Томские ученые представили цифровое решение для оптимизации НПЗ | |
Новый программный комплекс представили ученые ... |
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью | |
Методику создания синтетических данных для&nbs... |
Численное моделирование повысит эффективность 3D-печати из стали 316LSi | |
Морская нержавейка, или сталь 316LSi, шир... |
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей | |
Новый сплав на основе алюминия создали ис... |
В НГУ разработали первые фильтры для технологии связи 6G | |
Уникальные фильтры для импульсной терагер... |
Nat. Nanotechnol: Разработан самоочищающийся электрод для синтеза пероксидов | |
Пероксиды металлов — MO₂, M=Ca, Sr,... |
В СПбГУ создали новые биоактивные молекулы с помощью золотого катализатора | |
Метод соединения двух простых веществ с п... |
AFM: Разработан материал для поглощения электромагнитных волн широкого спектра | |
Ультратонкий пленочный композитный материал, с... |
PRL: Доказана возможность открытия новых сверхтяжелых элементов | |
Уран — самый тяжелый из извест... |
NE: Новый жидкостный акустический датчик распознаёт голоса в шумной обстановке | |
Инженеры разработали множество сложных датчико... |
Science: Новый метод спектроскопии раскрывает квантовые секреты воды | |
Вода — это жизнь. Но водо... |
В ИРНИТУ создали первую партию инклинометров и объединили их в умную сеть | |
Сотрудники Центра маркшейдерских и геодез... |
Ученые УУНиТ создали первый отечественный станок для сухого электрополирования | |
Ученые Уфимского университета науки и тех... |
Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет | |
Физическая модель, которая описывает взаимодей... |
Новый метод синтеза лекарств открыли российские химики | |
Новый метод синтеза производных пирролизидина ... |