Графен привлекает массу внимания благодаря многообещающему потенциальному применению в электронике, биомедицине, устройствах хранения энергии, датчиках и других ультрасовременных технологических областях. Популярностью графен обязан своим удивительным свойствам, таким как чрезвычайно высокая мобильность электронов, хорошая теплопроводность и высокая эластичность. Успешная реализация устройств на основе графена требует точного копирования листов графена в микрометровом и нанометровом масштабе. Открытие идеальной технологии для достижения желаемого копирования графена пока составляет проблему. Трехмерная печать, также известная как аддитивное производство, становится жизнеспособной альтернативой обычным производственным процессам в разных отраслях, от детских игрушек до автомобилей, моды, архитектуры, армии, биомедицины и аэрокосмических технологий. Впервые ученые продемонстрировали наноструктуры, напечатанные методом трехмерной печати и состоящие целиком из графена. Исследователи во главе с профессором Сун Квон Сол из Корейского института исследования электрических технологий опубликовали открытие в издании Advanced Materials. «Мы разработали подход трехмерной нанопечати, который использует мениск жидкости с контролируемым размером для изготовления нанопроводов из трехмерного восстановленного оксида графена», пояснил Сол. „Наш метод, отличный от обычных подходов трехмерной печати, которые используют нити или порошки в качестве печатного сырья, задействует растягиваемый мениск жидкости чернил. Это позволяет нам реализовать впечатляющие напечатанные структуры, чем позволило бы отверстие форсунки“. Исследователи отметили, что их новый подход эффективен как в трехмерной печати графеновых наноструктур, так и трехмерной нанопечати из множества материалов. «Мы убеждены, что этот подход представит новую парадигму в создании трехмерных копий в печатной электронике», сообщил Сол. Для технологии ученые вырастили провода оксида графена при комнатной температуре с помощью мениска, сформированного в наконечнике микропипетки, наполненном коллоидной дисперсией листов оксида графена, а затем восстановили их с помощью термической или химической обработки гидразином. Осаждение оксида графена было достигнуто натяжением микропипетки так, что растворитель быстро испарялся, способствуя росту проводов оксида графена. Исследователи смогли точно контролировать радиус проводов восстановленного оксида графена, настроив степень натяжения пипетки; им удалось достичь минимального значения — 150 нанометров. С помощью этой техники ученые сумели создать множество разной автономной архитектуры восстановленного оксида графена, выращенной непосредственно на выбранных участках и в разных направлениях: прямые провода, мосты, суспендированные соединения и тканые структуры. «До сих пор никто не сообщал о трехмерных наноструктурах, состоящих полностью из графена», сказал Сол. „В ряде случаев появлялись сообщения о трехмерной печати графена или углеродных нанотрубок либо пластиковых композитных материалов с помощью обычного трехмерного принтера. В подобных композитных системах графен или углеродные нанотрубки выполняют важную функцию улучшения свойств пластиковых материалов, используемых сегодня в трехмерных принтерах. Однако пластиковые материалы, используемые в производстве композитных структур, ухудшают свойства графена или углеродных нанотрубок“. Сол добавил, что новый подход трехмерной нанопечати может использоваться для производства двумерных копий и трехмерной архитектуры в различных устройствах, таких как печатные микросхемы, транзисторы, светодиоды, солнечные батареи, датчики и т.д. Сокращение размера деталей, полученных методом трехмерной печати, до менее чем 10 нанометров, и увеличение объема продукции до сих пор остаются проблемой. 29.11.2014 |
Нано
В СибГМУ снарядили против рака магнитные наночастицы | |
Ученые из Сибирского государственного мед... |
Как графен может изменить вашу жизнь: от питьевой воды до тепла в доме | |
Жидкости с добавлением графена высыхают п... |
Система доставки на основе экстракта семян нима повышает эффект нанопестицидов | |
Как сделать пестициды более эффективными и&nbs... |
Science Robotics: С помощью ДНК-оригами можно создавать медицинских роботов | |
Важное открытие в области молекулярной ро... |
В ТПУ научились управлять свойствами графена с помощью лазера | |
Как можно восстанавливать оксид графена с ... |
Ученые научились производить заживляющие наночастицы в промышленных масштабах | |
Новый метод производства специальных растворов... |
JACS: Открыт новый тип наночастиц гидрида палладия, которые запирают водород | |
Палладий — это редкий металл, ... |
PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене | |
К разгадке, почему электроны могут разделяться... |
FRI: Нанокапсулы с антоцианами делают привычные продукты полезнее | |
В ходе исследования ученые обнаружили, что&nbs... |
Nature Communications: Наночастицы с оснасткой находят белки в плазме крови | |
Новый способ, который поможет находить в ... |
NatElec: Нанотранзисторы преодолеют ограничения кремниевых полупроводников | |
Кремниевые транзисторы, которые используются д... |
Ученые создали устройство для хранения и передачи информации с помощью света | |
Устройство на основе углеродной нанотрубк... |
Созданы частицы с квантовыми точками для многоразового применения в биомедицине | |
Новые светящиеся микрочастицы, состоящие из&nb... |
В России доказали эффективность нанокомпозитов для лечения атеросклероза | |
Модифицированные нанокомпозиты для лечени... |
Science: Открыт новый метод выращивания полезных квантовых точек | |
Квантовые точки, или полупроводниковые на... |
PNAS: Новый метод поможет собирать в 10 раз больше золота из электронных отходов | |
Губку из оксида графена и хитозана д... |
Nature Nanotechnology: Идет создание упрощенной формы жизни | |
Учёные много лет пытаются понять, как&nbs |
LS&A: Разработан метод синтеза наночастиц высокоэнтропийных сплавов | |
Быстрое создание наночастиц высокоэнтропийных ... |
Nano Letters: Тройные стыки — залог сохранения стабильности наноматериалов | |
Как создать материалы, которые будут прочнее и... |
Nature Nanotechnology: Нанодиски для стимуляции мозга заменят инвазивные электроды | |
Новые магнитные нанодиски разработали учёные и... |
NatComm: Создана основа для практического применения наночастиц в военной связи | |
Новую технологию шифрования связи в видим... |
В СПбГУ усовершенствовали полупроводниковые наноструктуры для оптоэлектроники | |
Учёные Санкт-Петербургского государственного у... |
NatComm: Белки-шапероны помогают обычным белкам принять правильную форму | |
Белки играют важную роль в организме, и&n... |
EMBO Reports: Разработан биологический подход для изучения паттернинга тканей | |
Как морфогены в сочетании с клеточно... |
LS&A: Разработан хиральный нанокомпозит для зондирования сероводорода | |
С развитием нанотехнологий создано много искус... |
NatComm: Созданы чувствительные к магнитному полю спиновые кубиты из нанотрубок | |
Нанотрубки из нитрида бора, BNNTs, содерж... |
NatNanotechnol: Силоксановые наночастицы целятся точно в органы при мРНК терапии | |
Инженеры из Пенсильвании открыли новый сп... |
ACS Nano: Открыты светопоглощающие свойства ахиральных материалов | |
Исследователи из Университета Оттавы сдел... |
Nature Communications: Наноструктуры на дне океана намекают на зарождение жизни | |
Исследователи из Центра устойчивого ресур... |
ACS Nano: Искусственный паучий шелк превратят в медицинские материалы | |
Скоро Хэллоуин, пора украшать дома страшными в... |