Когда дело касается разработки однослойных атомных структур, мысли о промежутке помогут ученым создавать искусственные электронные материалы одноатомного слоя за один раз. Промежуток — это крошечный вакуум, который исследователи из Центра двухмерных и слоистых материалов Пенсильванского университета штата считают энергетическим барьером, ограждающим электроны от легкого перескакивания с одного слоя материала на другой. «Мы все еще пытаемся понять, как электроны вертикально перемещаются по указанным слоистым материалам, и мы полагаем, что на это должно затрачиваться намного меньше энергии», сообщил доцент Джошуа Робинсон. „Благодаря сочетанию теории и эксперимента мы теперь знаем, что должны учитывать этот промежуток, когда разрабатываем новые материалы“. Впервые ученые вырастили одноатомный слой диселенида вольфрама на одноатомной графеновой подложке с изначальными интерфейсами между двумя слоями. Когда исследователи попытались сместить напряжение с верхнего слоя диселенида вольфрама на графеновый слой, они столкнулись с неожиданным сопротивлением. Примерно половина этого сопротивления была вызвана промежутком, который ввел масштабный барьер, порядка 1 электрон-вольт, для электронов, пытающихся перемещаться между слоями. Этот энергетический барьер может оказаться полезным в разработке электронных устройств следующего поколения, таких как вертикальные туннельные полевые транзисторы. Интерес в этом типе материалов возрос с открытием методов производства однослойного графита. Пенсильванские исследователи использовали более масштабируемый метод, нежели первые производители графена — химическое паровое осаждение — для осаждения одного слоя кристаллического диселенида вольфрама на вершине нескольких слоем графена, выращенного из кремниевого карбида. Хотя исследование графена буквально взорвалось в последнее десятилетие, существует множество подобных твердых частиц, которые модно объединить для создания совершенно новых искусственных материалов с невообразимыми свойствами. Исследователи обнаружили, что слой диселенида вольфрама растет в отлично выровненных треугольных островках 1-3 микрона величиной, которые медленно соединяются в единый кристалл площадью до 1 сантиметра. Результаты опубликованы в издании Nano Letters. 29.12.2014 |
Нано
В СибГМУ снарядили против рака магнитные наночастицы | |
Ученые из Сибирского государственного мед... |
Как графен может изменить вашу жизнь: от питьевой воды до тепла в доме | |
Жидкости с добавлением графена высыхают п... |
Система доставки на основе экстракта семян нима повышает эффект нанопестицидов | |
Как сделать пестициды более эффективными и&nbs... |
Science Robotics: С помощью ДНК-оригами можно создавать медицинских роботов | |
Важное открытие в области молекулярной ро... |
В ТПУ научились управлять свойствами графена с помощью лазера | |
Как можно восстанавливать оксид графена с ... |
Ученые научились производить заживляющие наночастицы в промышленных масштабах | |
Новый метод производства специальных растворов... |
JACS: Открыт новый тип наночастиц гидрида палладия, которые запирают водород | |
Палладий — это редкий металл, ... |
PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене | |
К разгадке, почему электроны могут разделяться... |
FRI: Нанокапсулы с антоцианами делают привычные продукты полезнее | |
В ходе исследования ученые обнаружили, что&nbs... |
Nature Communications: Наночастицы с оснасткой находят белки в плазме крови | |
Новый способ, который поможет находить в ... |
NatElec: Нанотранзисторы преодолеют ограничения кремниевых полупроводников | |
Кремниевые транзисторы, которые используются д... |
Ученые создали устройство для хранения и передачи информации с помощью света | |
Устройство на основе углеродной нанотрубк... |
Созданы частицы с квантовыми точками для многоразового применения в биомедицине | |
Новые светящиеся микрочастицы, состоящие из&nb... |
В России доказали эффективность нанокомпозитов для лечения атеросклероза | |
Модифицированные нанокомпозиты для лечени... |
Science: Открыт новый метод выращивания полезных квантовых точек | |
Квантовые точки, или полупроводниковые на... |
PNAS: Новый метод поможет собирать в 10 раз больше золота из электронных отходов | |
Губку из оксида графена и хитозана д... |
Nature Nanotechnology: Идет создание упрощенной формы жизни | |
Учёные много лет пытаются понять, как&nbs |
LS&A: Разработан метод синтеза наночастиц высокоэнтропийных сплавов | |
Быстрое создание наночастиц высокоэнтропийных ... |
Nano Letters: Тройные стыки — залог сохранения стабильности наноматериалов | |
Как создать материалы, которые будут прочнее и... |
Nature Nanotechnology: Нанодиски для стимуляции мозга заменят инвазивные электроды | |
Новые магнитные нанодиски разработали учёные и... |
NatComm: Создана основа для практического применения наночастиц в военной связи | |
Новую технологию шифрования связи в видим... |
В СПбГУ усовершенствовали полупроводниковые наноструктуры для оптоэлектроники | |
Учёные Санкт-Петербургского государственного у... |
NatComm: Белки-шапероны помогают обычным белкам принять правильную форму | |
Белки играют важную роль в организме, и&n... |
EMBO Reports: Разработан биологический подход для изучения паттернинга тканей | |
Как морфогены в сочетании с клеточно... |
LS&A: Разработан хиральный нанокомпозит для зондирования сероводорода | |
С развитием нанотехнологий создано много искус... |
NatComm: Созданы чувствительные к магнитному полю спиновые кубиты из нанотрубок | |
Нанотрубки из нитрида бора, BNNTs, содерж... |
NatNanotechnol: Силоксановые наночастицы целятся точно в органы при мРНК терапии | |
Инженеры из Пенсильвании открыли новый сп... |
ACS Nano: Открыты светопоглощающие свойства ахиральных материалов | |
Исследователи из Университета Оттавы сдел... |
Nature Communications: Наноструктуры на дне океана намекают на зарождение жизни | |
Исследователи из Центра устойчивого ресур... |
ACS Nano: Искусственный паучий шелк превратят в медицинские материалы | |
Скоро Хэллоуин, пора украшать дома страшными в... |