Конец выбросам! Ученые MIT научились улавливать и преобразовывать углекислый газ

В гонке за сокращение выбросов парниковых газов по всему миру ученые Массачусетского технологического института (MIT) обратились к технологиям улавливания углерода для декарбонизации наиболее неуступчивых промышленных предприятий.

Особенно трудно поддаются декарбонизации сталелитейная, цементная и химическая отрасли, поскольку углерод и ископаемое топливо являются неотъемлемыми компонентами их производства. Технологии, позволяющие улавливать выбросы углерода и преобразовывать их в формы, используемые в производственном процессе, могли бы способствовать снижению общего объема выбросов в этих «трудноуничтожимых» отраслях.

Однако до сих пор экспериментальные технологии, позволяющие улавливать и преобразовывать углекислый газ, представляют собой два отдельных процесса, которые сами по себе требуют огромного количества энергии. Специалисты Массачусетского технологического института стремятся объединить эти два процесса в одну интегрированную и гораздо более энергоэффективную систему, которая в перспективе могла бы работать на возобновляемых источниках энергии для улавливания и преобразования углекислого газа из концентрированных промышленных источников.

В исследовании, опубликованном сегодня в журнале ACS Catalysis, ученые раскрывают скрытый принцип работы системы улавливания и преобразования углекислого газа с помощью одного электрохимического процесса. Этот процесс включает в себя использование электрода для притягивания углекислого газа, выделяющегося из сорбента, и его преобразования в восстановленную форму, пригодную для повторного использования.

Другие исследователи уже сообщали о подобных демонстрациях, но механизмы, приводящие в действие электрохимические реакции, оставались неясными. Группа специалистов Массачусетского технологического института провела обширные эксперименты для определения этого механизма и пришла к выводу, что в конечном итоге все сводится к парциальному давлению углекислого газа. Другими словами, чем более чистый углекислый газ контактирует с электродом, тем эффективнее электрод может захватывать и преобразовывать молекулу.

Знание этого основного фактора, или «активного вида», может помочь ученым настроить и оптимизировать аналогичные электрохимические системы для эффективного захвата и преобразования углекислого газа в комплексном процессе.

Результаты исследования свидетельствуют о том, что, хотя подобные электрохимические системы, вероятно, не подойдут для работы в очень разбавленных средах (например, для улавливания и преобразования выбросов углерода непосредственно из воздуха), они будут хорошо подходить для высококонцентрированных выбросов, образующихся в ходе промышленных процессов, особенно тех, которые не имеют очевидной возобновляемой альтернативы.

Мы можем и должны перейти на возобновляемые источники энергии для производства электроэнергии. Но глубокая декарбонизация таких отраслей промышленности, как производство цемента или стали, является сложной задачей и потребует более длительного времени, — говорит автор исследования Бетар Галлант, доцент Массачусетского технологического института (Class of 1922 Career Development Associate Professor at MIT).

Даже если мы избавимся от всех наших электростанций, нам понадобятся решения для борьбы с выбросами других отраслей промышленности в более короткие сроки, прежде чем мы сможем полностью декарбонизировать их. Именно здесь мы видим «золотую середину», в которую может вписаться нечто подобное этой системе.

Соавторами исследования в Массачусетском технологическом институте являются ведущий автор и постдок Грэм Леверик и аспирантка Элизабет Бернхардт, а также Айсиах Иллиани Исмаил, Джун Хуи Лоу, Ариф Арифутзаман и Мохамед Хейреддин Аруа из университета Санвей (Малайзия).

Разрыв связей

Технологии улавливания углерода предназначены для улавливания выбросов, или «дымовых газов», из дымовых труб электростанций и производственных предприятий. Для этого, в первую очередь, используются крупные модернизированные установки, которые направляют выбросы в камеры, заполненные „улавливающим“ раствором — смесью аминов или соединений на основе аммиака, которые химически связываются с углекислым газом, образуя стабильную форму, которую можно отделить от остального дымового газа.

Затем под воздействием высоких температур, обычно в виде пара, вырабатываемого на ископаемом топливе, уловленный углекислый газ освобождается от аминных связей. В чистом виде газ может закачиваться в резервуары или подземные хранилища, минерализоваться или перерабатываться в химические вещества или топливо.

Улавливание углерода — это зрелая технология, поскольку химический состав известен уже около 100 лет, но для ее реализации требуются очень большие установки, и она достаточно дорога и энергоемка, — отмечает Галлант.

Нам нужны более модульные и гибкие технологии, которые могут быть адаптированы к более разнообразным источникам углекислого газа. Электрохимические системы могут помочь решить эту проблему.

Ее группа в Массачусетском технологическом институте разрабатывает электрохимическую систему, которая одновременно рекуперирует уловленный углекислый газ и преобразует его в уменьшенный, пригодный для использования продукт. По ее словам, такая интегрированная, а не разрозненная система может полностью питаться возобновляемой электроэнергией, а не паром, получаемым из ископаемого топлива.

В основе их концепции лежит электрод, который помещается в существующие камеры растворов для улавливания углерода. При подаче напряжения на электрод электроны попадают на реактивную форму углекислого газа и превращают ее в продукт, используя протоны, поступающие из воды. Таким образом, сорбент становится доступным для связывания большего количества углекислого газа, а не для использования пара.

Ранее Галлант продемонстрировала, что этот электрохимический процесс может работать для улавливания и преобразования углекислого газа в твердую карбонатную форму.

Мы показали, что этот электрохимический процесс осуществим в самых ранних концепциях, — говорит она.

С тех пор появились другие исследования, направленные на использование этого процесса для получения полезных химических веществ и топлива. Но объяснения того, как протекают эти реакции, были противоречивы.

СО2 соло

В новом исследовании специалисты Массачусетского технологического института заглянули под капот с увеличительным стеклом, чтобы выяснить, какие именно реакции лежат в основе электрохимического процесса.В лаборатории были получены растворы аминов, напоминающие промышленные растворы, используемые для извлечения углекислого газа из дымовых газов. Методично изменяли различные свойства каждого раствора, такие как pH, концентрация и тип амина, затем пропускали каждый раствор через серебряный электрод — металл, широко используемый в электролизе и известный тем, что эффективно преобразует углекислый газ в монооксид углерода.В конце реакции измеряли концентрацию образовавшегося монооксида углерода и сравнивали ее с концентрацией всех остальных растворов, чтобы определить, какой параметр в наибольшей степени влияет на количество образовавшегося монооксида углерода.

В итоге выяснилось, что наибольшее значение имеет не тип амина, используемого для первоначального улавливания углекислого газа, как предполагали многие. А концентрация одиночных, свободно плавающих молекул углекислого газа, которые не вступают в связь с аминами, но, тем не менее, присутствуют в растворе. Этот «соло-СО2» и определял концентрацию образующегося в итоге монооксида углерода.Мы обнаружили, что этот „одиночный“ CO2 легче вступает в реакцию, чем CO2, захваченный амином», — говорит Леверик.»Это говорит будущим исследователям о том, что данный процесс может быть применим в промышленных потоках, где высокие концентрации углекислого газа могут быть эффективно уловлены и преобразованы в полезные химические вещества и топливо».

Это не технология удаления углекислого газа, и это важно отметить, — подчеркивает Галлант.

Ее ценность заключается в том, что она позволяет нам многократно перерабатывать углекислый газ, поддерживая при этом существующие промышленные процессы, при меньшем количестве сопутствующих выбросов. В конечном счете, я мечтаю о том, чтобы электрохимические системы использовались для минерализации и постоянного хранения CO2 — настоящей технологии удаления. Это более долгосрочная перспектива. И многое из того, что мы сейчас начинаем понимать, является первым шагом к разработке таких процессов.

Исследование выполнено при поддержке университета Sunway в Малайзии.

07.09.2023


Подписаться в Telegram



Экология

Science: Лесная растительность в Европе мигрирует на запад на 3,56 км ежегодно
Science: Лесная растительность в Европе мигрирует на запад на 3,56 км ежегодно

Многие виды европейских лесных растений переме...

STE: Ученые нашли нанопластик в тканях новорожденных
STE: Ученые нашли нанопластик в тканях новорожденных

Даже новорожденные грызуны могут столкнуться с...

Продовольственная система разрушена, и у нас осталось всего 60 урожаев
Продовольственная система разрушена, и у нас осталось всего 60 урожаев

Защитники окружающей среды, исследователи, фер...

В УГНТУ разработали новый способ утилизации газов
В УГНТУ разработали новый способ утилизации газов

Способ утилизации топочных газов на предп...

Nature Geoscience: Антарктида зеленеет с ужасающей скоростью
Nature Geoscience: Антарктида зеленеет с ужасающей скоростью

За последние 40 лет растительный покров А...

RSC Sustainability: Для производства фумаровой кислоты начнут применять выбросы
RSC Sustainability: Для производства фумаровой кислоты начнут применять выбросы

Из-за быстрого накопления пластиковых отходов ...

Поиск на сайте

Знатоки клуба инноваций


ТОП - Новости мира, инновации

Российские ученые предложили использовать вирус растений для лечения саркомы
Российские ученые предложили использовать вирус растений для лечения саркомы
Menopause: Ученые заподозрили роль эстрогена в развитии астмы
Menopause: Ученые заподозрили роль эстрогена в развитии астмы
AEM: Гибридный полупроводник позволит лучше понять спинтронику
AEM: Гибридный полупроводник позволит лучше понять спинтронику
FCoSc: Гигантские крысы поборются с незаконной торговлей дикими животными
FCoSc: Гигантские крысы поборются с незаконной торговлей дикими животными
В России разработали искусственные кости и новые методы лечения позвоночника
В России разработали искусственные кости и новые методы лечения позвоночника
TE&E: Животные потребляют алкоголь чаще, чем мы думаем
TE&E: Животные потребляют алкоголь чаще, чем мы думаем
Волнообразные упражнения со штангой: польза или вред
Волнообразные упражнения со штангой: польза или вред
JA&FC: Сорго обогащает рацион питания биоактивными соединениями
JA&FC: Сорго обогащает рацион питания биоактивными соединениями
Nature Communications: Жизнь все-таки можно повернуть назад
Nature Communications: Жизнь все-таки можно повернуть назад
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью
EBioMedicine: Создан инструмент для выявления сепсиса у новорожденных
EBioMedicine: Создан инструмент для выявления сепсиса у новорожденных
Численное моделирование повысит эффективность 3D-печати из стали 316LSi
Численное моделирование повысит эффективность 3D-печати из стали 316LSi
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей
Влияние цвета в архитектуре на самоконтроль человека: мнение эксперта МХПИ
Влияние цвета в архитектуре на самоконтроль человека: мнение эксперта МХПИ
Томские ученые представили цифровое решение для оптимизации НПЗ
Томские ученые представили цифровое решение для оптимизации НПЗ

Новости компаний, релизы

Международные эксперты оценили разработанную для нижегородского завода технологию
Регистрация сми на IV конгресс молодых ученых продлевается до 6 ноября
Фестиваль научных театров «Наука всем!» прошёл в Санкт-Петербурге
На старт! Внимание! MITEX!
Пироговская олимпиада для школьников по химии и биологии