Исследование двойникования в наноматериалах открывает новые возможности

Чтобы понять поведение наноматериалов, нужно понять и механизмы деформации в атомном масштабе, которые определяют структуру наноматериалов, их прочность и функции.

Исследователи из университета Питтсбурга, университета Дрекселя и технологического университета Джорджии спроектировали новый метод наблюдения и исследования указанных механизмов, а кроме того продемонстрировали необычное явление в вольфраме. Научная группа впервые наблюдала деформационное двойникование объемно-центрированных кубических нанокристаллов вольфрама на атомном уровне.

Для проведения наблюдений ученые применили высокоразрешающий трансмиссионный электронный микроскоп и сложное компьютерное моделирование.

Результаты работы опубликованы в издании Nature Materials.

Деформационное двойникование — это тип деформации, который в сочетании со скольжением дислокации позволяет материалам постоянно деформироваться без разрушения. В процессе двойникования кристалл переориентируется, что формирует область в кристалле, которая является зеркальным отображением оригинального кристалла. Двойникование наблюдается в крупномасштабных объемно-центрированных кубических металлах и сплавах во время деформации. Однако пока неизвестно, происходит двойникование в объемно-центрированных кубических наноматериалах или нет.

«Чтобы добиться глубокого понимания деформации в объемно-центрированных кубических наноматериалах, мы совместили визуализацию в атомном масштабе и симуляции, чтобы показать, что двойникование доминирует для большинства состояний ввода вследствие нехватки других механизмов деформации в наномасштабных объемно-центрированных кубических решетках», сообщил старший автор статьи Скотт Мао.

В качестве типичного объемно-центрированного кубического кристалла команда выбрала вольфрам. Чаще всего вольфрам применяется для создания нитей ламп накаливания.

Наблюдение двойникования проводилось внутри трансмиссионно-электронного микроскопа. Этот вид исследования не был доступен в прошлом вследствие сложностей в подготовке объемно-центрированных кубических образцов менее 100 нанометров величиной, как того требует визуализация с помощью указанного прибора. Аспирант Цзян Вей Вонг, ведущий автор статьи, разработал отличный способ получения объемно-центрированных кубических вольфрамовых нанопроводов. Под микроскопом Вонг сплавил вместе два маленьких кусочка отдельных нанокристаллов вольфрама и получил провод порядка 20 нанометров в диаметре. Этот провод оказался достаточно прочным для растягивания и сжатия во время наблюдения феномена двойникования в настоящем времени.

Чтобы лучше понять этот феномен, доцент Кристофер Вейнбергер разработал компьютерные модели, которые продемонстрировали механическое поведение вольфрамовой наноструктуры на атомном уровне. Моделирование позволило команде увидеть физические факторы в действии в ходе двойникования. Полученные данные помогут ученым предположить, почему явление имеет место в наномасштабном вольфраме, и проложить курс для исследований в других объемно-центрированных кубических материалах.

Помимо этого доцент Тинг Чжу и аспирант Чжи Чжень создали компьютерные симуляции с использованием молекулярной динамики, чтобы исследовать деформационные процессы в трехмерном пространстве.

Симуляции показали, что свойство вольфрама «чем меньше, тем прочней» не обходится без недостатков, когда дело касается его применения.

«Если вы сократите размер до наномасштаба, то сможете увеличить прочность на несколько порядков», отметил Чжу. „Однако за это придется уплатить свою цену: материал утратит эластичность. Мы хотим увеличить прочность, не жертвуя эластичностью этих наноструктурных металлов и сплавов. Чтобы добиться этого, нам требуется понять, как управлять механизмами деформации, как их контролировать“.

Ссылка по теме: http://www.news.pitt.edu/news/seeing-tiny-twins

10.03.2015


Подписаться в Telegram



Нано

В СПбГУ создали нанолисты цинка для систем очистки воды
В СПбГУ создали нанолисты цинка для систем очистки воды

Новый способ создания особых наночастиц нашли ...

В СибГМУ снарядили против рака магнитные наночастицы
В СибГМУ снарядили против рака магнитные наночастицы

Ученые из Сибирского государственного мед...

В ТПУ научились управлять свойствами графена с помощью лазера
В ТПУ научились управлять свойствами графена с помощью лазера

Как можно восстанавливать оксид графена с ...

PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене
PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене

К разгадке, почему электроны могут разделяться...

FRI: Нанокапсулы с антоцианами делают привычные продукты полезнее
FRI: Нанокапсулы с антоцианами делают привычные продукты полезнее

В ходе исследования ученые обнаружили, что&nbs...

NatElec: Нанотранзисторы преодолеют ограничения кремниевых полупроводников
NatElec: Нанотранзисторы преодолеют ограничения кремниевых полупроводников

Кремниевые транзисторы, которые используются д...

Science: Открыт новый метод выращивания полезных квантовых точек
Science: Открыт новый метод выращивания полезных квантовых точек

Квантовые точки, или полупроводниковые на...

Nature Nanotechnology: Идет создание упрощенной формы жизни
Nature Nanotechnology: Идет создание упрощенной формы жизни

Учёные много лет пытаются понять, как&nbs

LS&A: Разработан метод синтеза наночастиц высокоэнтропийных сплавов
LS&A: Разработан метод синтеза наночастиц высокоэнтропийных сплавов

Быстрое создание наночастиц высокоэнтропийных ...

Поиск на сайте

Знатоки клуба инноваций


ТОП - Новости мира, инновации

IJB: Если дуриан не поливать, он начинает цвести
IJB: Если дуриан не поливать, он начинает цвести
В Сеченовском Университете создали ИИ для прогнозирования метастазов
В Сеченовском Университете создали ИИ для прогнозирования метастазов
Первичные реснички — вероятный ключ к лечению бокового амиотрофического склероза
Первичные реснички — вероятный ключ к лечению бокового амиотрофического склероза
Ученые Державинского университета изучают вероятные риски киберспорта для зрения
Ученые Державинского университета изучают вероятные риски киберспорта для зрения
Цифровые этикетки помогут супермаркетам производить меньше пищевых отходов
Цифровые этикетки помогут супермаркетам производить меньше пищевых отходов
Как физика нейтрино раскрывает секреты Вселенной
Как физика нейтрино раскрывает секреты Вселенной
Science: Ученые сделали картофель безопасным и решили проблему пищевых отходов
Science: Ученые сделали картофель безопасным и решили проблему пищевых отходов
Открыты новые материалы для производства передовых компьютерных чипов
Открыты новые материалы для производства передовых компьютерных чипов
Океан возможностей: как инновационные компании помогают делать мир устойчивее
Океан возможностей: как инновационные компании помогают делать мир устойчивее
Найдены древние водоносные горизонты под поверхностью Марса
Найдены древние водоносные горизонты под поверхностью Марса
Бонобо без мамы: реабилитация в заповеднике помогает им стать частью общества
Бонобо без мамы: реабилитация в заповеднике помогает им стать частью общества
ИИ-тест крови изменит раннюю диагностику рака груди
ИИ-тест крови изменит раннюю диагностику рака груди
IJMS: Ученые определили функциональность транспортного белка виноградной лозы
IJMS: Ученые определили функциональность транспортного белка виноградной лозы
A&D: Плохое состояние сосудов ускоряет старение мозга
A&D: Плохое состояние сосудов ускоряет старение мозга
В МФТИ придумали новый способ анализа вещества против тромбоза
В МФТИ придумали новый способ анализа вещества против тромбоза

Новости компаний, релизы

В России разработана система «Второе мнение» для ультразвуковой диагностики щитовидной железы
Синергия Межвузовского кампуса ускорила патентование сырьевой смеси для строительной 3D-печати
Делегация Набережночелнинского педагогического университета прибыла в Алжир
Рустам Минниханов высоко оценил партнерство КНИТУ-КАИ и «Росатома»
Ученые Межвузовского кампуса выиграли гранты Российского научного фонда