Нобелевскую премию по химии в 2014 году вручили за важное открытие в области микроскопии, которое позволяет значительно улучшить пространственное разрешение. Инновация, которая привела к нанометровому разрешению, стала возможной благодаря достаточно маленькому источнику освещения, а также помещению этого источника очень близко к визуализируемому объекту. Одна из проблем, сопряженных с данным подходом, состоит в том, что в подобной близости источник и объект могут взаимодействовать друг с другом, размывая изображение. Новое исследование показало, как можно сделать наноскопию еще более четкой за счет лучшего расположения источника света. Предел дифракцииОбычная микроскопия ограничена дифракцией света вокруг объектов. А потому, когда световая волна из источника ударяет объект, волна несколько рассеивается. Это рассеивание ограничивает пространственное разрешение обычного микроскопа не более чем на половину длины волны используемого света. Дифракция видимого света ограничивает разрешение не более чем на несколько сотен нанометров. Как в этом случае микроскопия, используя видимый свет, достигает разрешения вплоть до нескольких нанометров? Используя крошечные источники света, которые не больше нескольких нанометров в диаметре. Примерами таких типов источников света служат флуоресцентные молекулы, наночастицы и квантовые точки. В своей работе ученые применили квантовые точки — крошечные кристаллы полупроводникового материала, способные излучать отдельные фотоны света. Если подобные источники света поместить достаточно близко к целевому объекту, нанометровые особенности можно считать решенными. Такой тип микроскопии под названием «суперразрешающая визуализация» преодолевает стандартный предел дифракции. Искажение изображенияИсследователи провели наноскопические разметки профайла электромагнитного поля вокруг серебряных нанопроводов, поместив поблизости квантовые точки (источники освещения). Выяснилось, что субволновая визуализация, страдающая от фундаментальной проблемы, а именно отраженного диполя, вызванного на поверхности нанопровода, искажает значение реального положения квантовой точки. Эта неопределенность в положении квантовой точки преобразуется напрямую в искажение измерения электромагнитного поля объекта. Искажение следует из факта, согласно которому электрический заряд, помещенный у металлической поверхности, сгенерирует электрическое поле, какое было бы, если бы ниже поверхности был расположен призрачный отрицательный заряд на том же удалении, что и оригинальный заряд выше этой поверхности. Это похоже на зеркальное отображение, которое мы видим в зеркале; зеркальный объект кажется удаленным от зеркала настолько же, что и оригинальный. Если у квантовой точки нет чистого электрического заряда, но есть чистый электрический диполь, небольшое смещение положительного и отрицательного заряда в точке. Таким образом, когда квантовая точка приближается к нанопроводу, провод создает «образ» электрического диполя, эмиссия которого может столкнуться с собственной эмиссией точки. Поскольку измеренный свет от точки является субстанцией процесса визуализации, наличие света, исходящего от отраженного диполя, может столкнуться со светом, исходящим непосредственно от точки. Это искажает воспринимаемую позицию точки на значение, которое в 10 раз выше ожидаемой пространственной точности техники визуализации. Эксперимент ученых позволил успешно измерить эффект изображения-диполя и должным образом показал, что этот эффект можно корректировать в соответствующих обстоятельствах. Итоговая работа обеспечит более точную карту электромагнитных полей, окружающих нанопровод. Результаты опубликованы в издании Nature Communications. Ссылка по теме: http://jqi.umd.edu/news/sharper-nanoscopy-0 20.03.2015 |
Нано
Живые «таймеры»: как молекулярные механизмы помогают организмам измерять время | |
Живые организмы следят за временем и ... |
Наносистема доставки молекул предвещает безопасную эру в разработке лекарств | |
Инновационную систему доставки лекарств, облад... |
JPC: Нанопузырьки совершат прорыв в эффективности химических реакций | |
Газы необходимы для многих химических реа... |
Сенсоры нового поколения: как молодые ученые ТулГУ приближают будущее медицины | |
Новые материалы, которые могут помочь в с... |
Nano Letters: Ученые научились делать нанотрубки, направленные в одну сторону | |
Впервые создали нанотрубки из дисульфида ... |
В Красноярске открыт новый двумерный материал из семейства валлериита | |
Ученые из Красноярска создали новый матер... |
AnChem: Открыт новый метод создания и усиления магнетизма в двумерных материалах | |
При толщине всего в несколько атомов двум... |
BiomatResearch: Наноразмерный анализ показал способ предотвращения эрозии зубов | |
Корейская исследовательская группа, которая ра... |
Золото в новом формате: ученые создали двумерные монослои золота для катализа | |
Исследователи создали почти отдельно стоящие н... |
В Сколтехе спроектировали датчик для обнаружения вредных веществ в воздухе | |
В Сколтехе разработали новый датчик, который м... |
Инженер придумал, как повысить чувствительность нанопор для обнаружения болезней | |
Новую технику в области нанотехнологий дл... |
В СПбГУ создали нанолисты цинка для систем очистки воды | |
Новый способ создания особых наночастиц нашли ... |
В СибГМУ снарядили против рака магнитные наночастицы | |
Ученые из Сибирского государственного мед... |
Как графен может изменить вашу жизнь: от питьевой воды до тепла в доме | |
Жидкости с добавлением графена высыхают п... |
Система доставки на основе экстракта семян нима повышает эффект нанопестицидов | |
Как сделать пестициды более эффективными и&nbs... |
Science Robotics: С помощью ДНК-оригами можно создавать медицинских роботов | |
Важное открытие в области молекулярной ро... |
В ТПУ научились управлять свойствами графена с помощью лазера | |
Как можно восстанавливать оксид графена с ... |
Ученые научились производить заживляющие наночастицы в промышленных масштабах | |
Новый метод производства специальных растворов... |
JACS: Открыт новый тип наночастиц гидрида палладия, которые запирают водород | |
Палладий — это редкий металл, ... |
PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене | |
К разгадке, почему электроны могут разделяться... |
FRI: Нанокапсулы с антоцианами делают привычные продукты полезнее | |
В ходе исследования ученые обнаружили, что&nbs... |
Nature Communications: Наночастицы с оснасткой находят белки в плазме крови | |
Новый способ, который поможет находить в ... |
NatElec: Нанотранзисторы преодолеют ограничения кремниевых полупроводников | |
Кремниевые транзисторы, которые используются д... |
Ученые создали устройство для хранения и передачи информации с помощью света | |
Устройство на основе углеродной нанотрубк... |
Созданы частицы с квантовыми точками для многоразового применения в биомедицине | |
Новые светящиеся микрочастицы, состоящие из&nb... |
В России доказали эффективность нанокомпозитов для лечения атеросклероза | |
Модифицированные нанокомпозиты для лечени... |
Science: Открыт новый метод выращивания полезных квантовых точек | |
Квантовые точки, или полупроводниковые на... |
PNAS: Новый метод поможет собирать в 10 раз больше золота из электронных отходов | |
Губку из оксида графена и хитозана д... |
Nature Nanotechnology: Идет создание упрощенной формы жизни | |
Учёные много лет пытаются понять, как&nbs |
LS&A: Разработан метод синтеза наночастиц высокоэнтропийных сплавов | |
Быстрое создание наночастиц высокоэнтропийных ... |