Потребность в устойчивых и экологичных решениях ускорила глобальный спрос на зеленые и возобновляемые технологии. В этой связи полупроводниковые фотокатализаторы стали привлекательным решением благодаря их потенциалу в снижении загрязнения окружающей среды и эффективном использовании солнечной энергии. Фотокатализаторы — это материалы, которые инициируют химические реакции под воздействием света. Несмотря на прогресс, широко используемые фотокатализаторы страдают от пониженной фотокаталитической активности и узкого диапазона работы в видимом спектре света. Кроме того, их трудно извлечь из растворов на водной основе, что ограничивает их применение в непрерывных процессах. Феррит висмута (BiFeO3), обладающий узкой полосовой щелью и магнитными свойствами, является привлекательным альтернативным фотокатализатором. Узкая полосовая щель BiFeO3 позволяет эффективно использовать свет в видимой области для возбуждения электронов из валентной полосы в полосу проводимости, оставляя вакантные дырки. Возбужденные электроны и дырки могут вызывать химические реакции, которые приводят к деградации загрязняющих веществ в водном растворе. Кроме того, ферромагнитные свойства позволяют легко извлекать BiFeO3 из раствора. Однако, как и обычные фотокатализаторы, BiFeO3 также страдает от быстрой рекомбинации электронно-дырочных пар, что значительно ограничивает его фотокаталитическую активность. Чтобы решить эту проблему, группа исследователей под руководством доцента Цо-Фу Марка Чанга из Института инновационных исследований Токийского технологического института (Япония) разработала новые нанокристаллы BiFeO3, декорированные наночастицами золота (Au). Их исследование, иллюстрация которого выбрана в качестве обложки ACS Supplementary Cover, опубликовано онлайн в журнале ACS Applied Nano Materials. Доктор Чанг объясняет:
Исследователи изготовили нанокристаллы Au-BiFeO3 с помощью гидротермального метода синтеза и простого растворного процесса декорирования BiFeO3 различными количествами Au. Команда оптимизировала фотокаталитическую активность нанокристаллов Au-BiFeO3, оценив их эффективность в разложении метиленового синего (MB), распространенного красителя для джинсовой одежды. MB хорошо растворим в воде, представляя значительную опасность для водных организмов и здоровья людей. Это также делает его идеальным загрязнителем для проверки эффективности фотокатализаторов. Эксперименты показали, что образец с 1,0% Au по весу проявил наилучшую активность, достигнув впечатляющей 98% эффективности разложения под 500-ваттной ксеноновой лампой в течение 120 минут. Более того, он также сохранил 80% своей первоначальной активности после четырех 120-минутных циклов, демонстрируя отличную стабильность. Кроме того, влияние Au на магнитные свойства BiFeO3 было незначительным, что говорит об отличной способности к вторичной переработке. Исследователи также изучили механизмы, с помощью которых Au усиливает фотокаталитическую активность. Когда нанокристалл Au-BiFeO3 освещается светом с подходящей длиной волны, электроны в BiFeO3 переходят в полосу проводимости. В отличие от рекомбинации, происходящей в голом BiFeO3, введение Au, имеющего менее отрицательный уровень Ферми, чем полоса проводимости BiFeO3, облегчает перенос возбужденных электронов из полосы проводимости в домен Au, тем самым способствуя накоплению дырок в BiFeO3. Это усиливает фотокаталитическую активность BiFeO3, позволяя ему легче вызывать генерацию гидроксильных радикалов в водных растворах. Эти гидроксильные радикалы обладают высокой активностью и легко атакуют молекулы MB в водном растворе, преобразуя их в безвредные продукты.
24.04.2024 |
Нано
Живые «таймеры»: как молекулярные механизмы помогают организмам измерять время | |
Живые организмы следят за временем и ... |
Наносистема доставки молекул предвещает безопасную эру в разработке лекарств | |
Инновационную систему доставки лекарств, облад... |
JPC: Нанопузырьки совершат прорыв в эффективности химических реакций | |
Газы необходимы для многих химических реа... |
Сенсоры нового поколения: как молодые ученые ТулГУ приближают будущее медицины | |
Новые материалы, которые могут помочь в с... |
Nano Letters: Ученые научились делать нанотрубки, направленные в одну сторону | |
Впервые создали нанотрубки из дисульфида ... |
В Красноярске открыт новый двумерный материал из семейства валлериита | |
Ученые из Красноярска создали новый матер... |
AnChem: Открыт новый метод создания и усиления магнетизма в двумерных материалах | |
При толщине всего в несколько атомов двум... |
BiomatResearch: Наноразмерный анализ показал способ предотвращения эрозии зубов | |
Корейская исследовательская группа, которая ра... |
Золото в новом формате: ученые создали двумерные монослои золота для катализа | |
Исследователи создали почти отдельно стоящие н... |
В Сколтехе спроектировали датчик для обнаружения вредных веществ в воздухе | |
В Сколтехе разработали новый датчик, который м... |
Инженер придумал, как повысить чувствительность нанопор для обнаружения болезней | |
Новую технику в области нанотехнологий дл... |
В СПбГУ создали нанолисты цинка для систем очистки воды | |
Новый способ создания особых наночастиц нашли ... |
В СибГМУ снарядили против рака магнитные наночастицы | |
Ученые из Сибирского государственного мед... |
Как графен может изменить вашу жизнь: от питьевой воды до тепла в доме | |
Жидкости с добавлением графена высыхают п... |
Система доставки на основе экстракта семян нима повышает эффект нанопестицидов | |
Как сделать пестициды более эффективными и&nbs... |
Science Robotics: С помощью ДНК-оригами можно создавать медицинских роботов | |
Важное открытие в области молекулярной ро... |
В ТПУ научились управлять свойствами графена с помощью лазера | |
Как можно восстанавливать оксид графена с ... |
Ученые научились производить заживляющие наночастицы в промышленных масштабах | |
Новый метод производства специальных растворов... |
JACS: Открыт новый тип наночастиц гидрида палладия, которые запирают водород | |
Палладий — это редкий металл, ... |
PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене | |
К разгадке, почему электроны могут разделяться... |
FRI: Нанокапсулы с антоцианами делают привычные продукты полезнее | |
В ходе исследования ученые обнаружили, что&nbs... |
Nature Communications: Наночастицы с оснасткой находят белки в плазме крови | |
Новый способ, который поможет находить в ... |
NatElec: Нанотранзисторы преодолеют ограничения кремниевых полупроводников | |
Кремниевые транзисторы, которые используются д... |
Ученые создали устройство для хранения и передачи информации с помощью света | |
Устройство на основе углеродной нанотрубк... |
Созданы частицы с квантовыми точками для многоразового применения в биомедицине | |
Новые светящиеся микрочастицы, состоящие из&nb... |
В России доказали эффективность нанокомпозитов для лечения атеросклероза | |
Модифицированные нанокомпозиты для лечени... |
Science: Открыт новый метод выращивания полезных квантовых точек | |
Квантовые точки, или полупроводниковые на... |
PNAS: Новый метод поможет собирать в 10 раз больше золота из электронных отходов | |
Губку из оксида графена и хитозана д... |
Nature Nanotechnology: Идет создание упрощенной формы жизни | |
Учёные много лет пытаются понять, как&nbs |
LS&A: Разработан метод синтеза наночастиц высокоэнтропийных сплавов | |
Быстрое создание наночастиц высокоэнтропийных ... |