Перовскитовые материалы по-прежнему вызывают большой интерес в области применения солнечных батарей. В настоящее время наноструктуры перовскитовых материалов рассматриваются в качестве новой лазерной среды. В течение многих лет сообщалось об усилении света в перовскитных квантовых точках, но в большинстве работ количественный анализ был недостаточным. Для оценки способности усиления света необходим «коэффициент усиления», с помощью которого выявляется важнейшая характеристика лазерной среды. Эффективная лазерная среда — это та, которая имеет большой коэффициент усиления. Ученые ищут способы увеличить этот коэффициент усиления. В недавнем исследовании группе исследователей под руководством профессора Квангсеука Кима (Kwangseuk Kyhm) с факультета оптики и мехатроники Пусанского национального университета в Корее удалось повысить коэффициент усиления сигнала в перовскитовых нанолистах CsPbBr3 с уникальным волноводным рисунком. Их исследование было опубликовано в журнале Light: Science & Applications 24 ноября 2023 года. Перовскитовые нанолисты представляют собой двумерные структуры, расположенные в листоподобных конфигурациях в наномасштабе, и обладают характеристиками, которые делают их ценными для различных применений. Их достижение позволяет преодолеть недостатки квантовых точек CsPbBr3, усиление которых изначально ограничено из-за Оже-процесса, который существенно сокращает время затухания инверсии населенности (состояние, при котором больше членов системы находятся в более высоких, возбужденных состояниях, чем в более низких, невозбужденных энергетических состояниях). Профессор Ким объясняет:
Исследователи также предложили новый анализ усиления «контур усиления», чтобы преодолеть ограничения предыдущего анализа усиления. Хотя старый метод позволяет получить спектр усиления, он не может проанализировать насыщение усиления при большой длине оптических полос. Поскольку „контур усиления“ иллюстрирует изменение усиления в зависимости от энергии спектра и длины оптической полоски, очень удобно анализировать локальное изменение усиления в зависимости от энергии спектра и длины оптической полоски. Исследователи также изучили зависимость контура усиления от возбуждения и температуры, а также узорчатый волновод на основе полиуретана-акрилата, который увеличил как усиление, так и термическую стабильность перовскитовых нанолистов. Это улучшение было связано с улучшением оптического удержания и теплоотвода, чему способствовали двумерные экситоны с ограниченным центром масс и локализованные состояния, возникающие из-за неоднородной толщины листа и дефектных состояний. Реализация такого узорчатого волновода перспективна для эффективного и контролируемого усиления сигнала и может способствовать разработке более надежных и универсальных устройств на основе перовскитовых нанолистов, включая лазеры, сенсоры и солнечные элементы. Кроме того, он может оказать влияние на отрасли, связанные с шифрованием и дешифрованием информации, нейроморфными вычислениями и коммуникациями в видимом свете. Кроме того, усиление и повышение эффективности могут помочь перовскитным солнечным элементам лучше конкурировать с традиционными солнечными элементами на основе кремния. Исследование также способно оказать значительное влияние на оптику и фотонику. Полученные данные помогут оптимизировать работу лазеров, улучшить передачу сигналов в оптической связи и повысить чувствительность фотоприемников. Это, в свою очередь, может позволить устройствам работать более надежно. В перспективе, когда потребуется интенсивный свет в наномасштабе, перовскитовые нанолисты можно будет объединить с другими наноструктурами, что позволит использовать усиленный свет в качестве оптического зонда. Однако успешное применение перовскитовых нанолистов в различных областях, включая потребительские товары, такие как смартфоны и освещение, будет зависеть от преодоления проблем, связанных с их стабильностью, масштабируемостью и токсичностью.
03.01.2024 |
Нано
Созданы новые подложки для культивирования клеток на основе анодного глинозема | |
Наноструктурированные поверхности из глин... |
Nano Letters: Валлитроника открывает новые возможности обработки данных | |
Транспорт электронов в двухслойном графен... |
Новый материал для электроники будущего: фосфид ниобия может изменить технологии | |
По мере того как компьютерные чипы станов... |
ES&T: Наномембрана со смешанным зарядом — инновация в очистке сточных вод | |
Исследовательская группа под руководством... |
Nano Letters: Новая технология поможет лучше понять мир на молекулярном уровне | |
С 1950-х годов ученые используют радиоволны дл... |
NatPhot: Новый шаг к революции в обработке данных — люминесцентные нанокристаллы | |
Ученые, в том числе исследователь хи... |
Свет — повелитель молекул: ученые совершили прорыв в химии | |
Ученые из Болонского университета под&nbs... |
Наночастицы селена помогут укрепить иммунитет и защитить сердце | |
Ученые создали наночастицы селена, которые мож... |
Студенты из Самары создали новое антимикробное покрытие для ткани | |
Студенты из университета имени Королева в... |
Живые «таймеры»: как молекулярные механизмы помогают организмам измерять время | |
Живые организмы следят за временем и ... |
Наносистема доставки молекул предвещает безопасную эру в разработке лекарств | |
Инновационную систему доставки лекарств, облад... |
JPC: Нанопузырьки совершат прорыв в эффективности химических реакций | |
Газы необходимы для многих химических реа... |
Сенсоры нового поколения: как молодые ученые ТулГУ приближают будущее медицины | |
Новые материалы, которые могут помочь в с... |
Nano Letters: Ученые научились делать нанотрубки, направленные в одну сторону | |
Впервые создали нанотрубки из дисульфида ... |
В Красноярске открыт новый двумерный материал из семейства валлериита | |
Ученые из Красноярска создали новый матер... |
AnChem: Открыт новый метод создания и усиления магнетизма в двумерных материалах | |
При толщине всего в несколько атомов двум... |
BiomatResearch: Наноразмерный анализ показал способ предотвращения эрозии зубов | |
Корейская исследовательская группа, которая ра... |
Золото в новом формате: ученые создали двумерные монослои золота для катализа | |
Исследователи создали почти отдельно стоящие н... |
В Сколтехе спроектировали датчик для обнаружения вредных веществ в воздухе | |
В Сколтехе разработали новый датчик, который м... |
Инженер придумал, как повысить чувствительность нанопор для обнаружения болезней | |
Новую технику в области нанотехнологий дл... |
В СПбГУ создали нанолисты цинка для систем очистки воды | |
Новый способ создания особых наночастиц нашли ... |
В СибГМУ снарядили против рака магнитные наночастицы | |
Ученые из Сибирского государственного мед... |
Как графен может изменить вашу жизнь: от питьевой воды до тепла в доме | |
Жидкости с добавлением графена высыхают п... |
Система доставки на основе экстракта семян нима повышает эффект нанопестицидов | |
Как сделать пестициды более эффективными и&nbs... |
Science Robotics: С помощью ДНК-оригами можно создавать медицинских роботов | |
Важное открытие в области молекулярной ро... |
В ТПУ научились управлять свойствами графена с помощью лазера | |
Как можно восстанавливать оксид графена с ... |
Ученые научились производить заживляющие наночастицы в промышленных масштабах | |
Новый метод производства специальных растворов... |
JACS: Открыт новый тип наночастиц гидрида палладия, которые запирают водород | |
Палладий — это редкий металл, ... |
PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене | |
К разгадке, почему электроны могут разделяться... |
FRI: Нанокапсулы с антоцианами делают привычные продукты полезнее | |
В ходе исследования ученые обнаружили, что&nbs... |