Исследователи из Центра устойчивого ресурсоведения RIKEN в Японии и Научного института Земли и жизни Токийского технологического института обнаружили наноструктуры, окружающие глубоководные гидротермальные источники океана. Они похожи на молекулы, которые делают возможной жизнь. Эти наноструктуры самоорганизуются и действуют как селективные ионные каналы, создавая энергию в виде электричества. Результаты исследования, опубликованные в журнале Nature Communications, могут быть использованы для промышленного сбора «голубой» энергии. Морская вода, просачиваясь через трещины в океанском дне, нагревается магмой и поднимается к поверхности. Здесь она снова попадает в океан через гидротермальные источники. Горячая вода содержит минералы, полученные из глубин Земли. При встрече с прохладной океанской водой происходят химические реакции, которые выталкивают ионы минералов из воды. Вокруг жерла эти ионы образуют твёрдые структуры — преципитаты. Гидротермальные источники — возможное место зарождения жизни на Земле, так как они стабильны, богаты минералами и содержат источники энергии. Большинство живых организмов на планете существуют благодаря осмотической энергии, которая создаётся разницей в концентрации солей и протонов между внутренней и внешней сторонами клеток. Учёные из RIKEN CSRS исследовали гидротермальные источники на серпентинитах, поскольку там минеральные осадки со слоистой структурой из оксидов, гидроксидов и карбонатов металлов. Исследователи обнаружили, что преобразование осмотической энергии может происходить без участия живых существ в геологической среде. Исследователи изучили образцы, собранные на месторождении Shinkai Seep Field в Марианской впадине на глубине 5743 метра. Один из образцов — кусок длиной 84 см, состоящий в основном из брусита. С помощью оптических микроскопов и рентгеновских лучей учёные выяснили, что кристаллы брусита образуют непрерывные колонны — наноканалы для жерловой жидкости. Поверхность осадка оказалась электрически заряжена. Размер и направление заряда (положительный или отрицательный) менялись по всей поверхности. Такие структурированные нанопоры с переменным зарядом характерны для осмотического преобразования энергии. Поэтому исследователи решили проверить, происходит ли такое преобразование естественным образом в неорганической глубоководной породе. Команда использовала электрод для измерения тока и напряжения в образцах. Когда образцы подвергались воздействию высоких концентраций хлорида калия, проводимость была прямо пропорциональна концентрации соли на поверхности нанопор. При более низких концентрациях проводимость оставалась постоянной и зависела от локального электрического заряда поверхности осадка. Такой ионный транспорт похож на ионные каналы в живых клетках, которые управляются напряжением, например, в нейронах. Исследователи изучили образцы из глубин океана и выяснили, что нанопоры действуют как селективные ионные каналы. В местах с карбонатом нанопоры пропускали положительно заряженные ионы натрия. А в нанопорах с кальцием — отрицательно заряженные ионы хлорида.
Промышленные электростанции используют разницу в солёности морской и речной воды для получения энергии. Этот процесс называется «сбор голубой энергии». Понимание того, как формируется нанопоровая структура в гидротермальных источниках, может помочь инженерам создать более совершенные способы получения электроэнергии за счёт осмотического преобразования. 25.09.2024 |
Нано
Живые «таймеры»: как молекулярные механизмы помогают организмам измерять время | |
Живые организмы следят за временем и ... |
Наносистема доставки молекул предвещает безопасную эру в разработке лекарств | |
Инновационную систему доставки лекарств, облад... |
JPC: Нанопузырьки совершат прорыв в эффективности химических реакций | |
Газы необходимы для многих химических реа... |
Сенсоры нового поколения: как молодые ученые ТулГУ приближают будущее медицины | |
Новые материалы, которые могут помочь в с... |
Nano Letters: Ученые научились делать нанотрубки, направленные в одну сторону | |
Впервые создали нанотрубки из дисульфида ... |
В Красноярске открыт новый двумерный материал из семейства валлериита | |
Ученые из Красноярска создали новый матер... |
AnChem: Открыт новый метод создания и усиления магнетизма в двумерных материалах | |
При толщине всего в несколько атомов двум... |
BiomatResearch: Наноразмерный анализ показал способ предотвращения эрозии зубов | |
Корейская исследовательская группа, которая ра... |
Золото в новом формате: ученые создали двумерные монослои золота для катализа | |
Исследователи создали почти отдельно стоящие н... |
В Сколтехе спроектировали датчик для обнаружения вредных веществ в воздухе | |
В Сколтехе разработали новый датчик, который м... |
Инженер придумал, как повысить чувствительность нанопор для обнаружения болезней | |
Новую технику в области нанотехнологий дл... |
В СПбГУ создали нанолисты цинка для систем очистки воды | |
Новый способ создания особых наночастиц нашли ... |
В СибГМУ снарядили против рака магнитные наночастицы | |
Ученые из Сибирского государственного мед... |
Как графен может изменить вашу жизнь: от питьевой воды до тепла в доме | |
Жидкости с добавлением графена высыхают п... |
Система доставки на основе экстракта семян нима повышает эффект нанопестицидов | |
Как сделать пестициды более эффективными и&nbs... |
Science Robotics: С помощью ДНК-оригами можно создавать медицинских роботов | |
Важное открытие в области молекулярной ро... |
В ТПУ научились управлять свойствами графена с помощью лазера | |
Как можно восстанавливать оксид графена с ... |
Ученые научились производить заживляющие наночастицы в промышленных масштабах | |
Новый метод производства специальных растворов... |
JACS: Открыт новый тип наночастиц гидрида палладия, которые запирают водород | |
Палладий — это редкий металл, ... |
PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене | |
К разгадке, почему электроны могут разделяться... |
FRI: Нанокапсулы с антоцианами делают привычные продукты полезнее | |
В ходе исследования ученые обнаружили, что&nbs... |
Nature Communications: Наночастицы с оснасткой находят белки в плазме крови | |
Новый способ, который поможет находить в ... |
NatElec: Нанотранзисторы преодолеют ограничения кремниевых полупроводников | |
Кремниевые транзисторы, которые используются д... |
Ученые создали устройство для хранения и передачи информации с помощью света | |
Устройство на основе углеродной нанотрубк... |
Созданы частицы с квантовыми точками для многоразового применения в биомедицине | |
Новые светящиеся микрочастицы, состоящие из&nb... |
В России доказали эффективность нанокомпозитов для лечения атеросклероза | |
Модифицированные нанокомпозиты для лечени... |
Science: Открыт новый метод выращивания полезных квантовых точек | |
Квантовые точки, или полупроводниковые на... |
PNAS: Новый метод поможет собирать в 10 раз больше золота из электронных отходов | |
Губку из оксида графена и хитозана д... |
Nature Nanotechnology: Идет создание упрощенной формы жизни | |
Учёные много лет пытаются понять, как&nbs |
LS&A: Разработан метод синтеза наночастиц высокоэнтропийных сплавов | |
Быстрое создание наночастиц высокоэнтропийных ... |