Исследовательская группа доктора Чи-Юнг Юнга из Центра водородных исследований и демонстраций Корейского института энергетических исследований успешно разработала метод анализа микроструктуры бумаги из углеродного волокна, ключевого материала для водородных топливных элементов, со скоростью, в 100 раз превышающей существующие методы. Этого удалось достичь благодаря использованию технологии цифрового двойника и искусственного интеллекта (ИИ). Результаты опубликованы в издании Applied Energy. Бумага из углеродного волокна является ключевым материалом в водородных топливных элементах, играя решающую роль в облегчении сброса воды и подачи топлива. Она состоит из таких материалов, как углеродные волокна, связующие вещества (клеи) и покрытия. Со временем расположение, структура и состояние покрытия этих материалов меняются, что приводит к снижению производительности топливного элемента. По этой причине анализ микроструктуры бумаги из углеродного волокна стал важным шагом в диагностике состояния топливных элементов. Однако до сих пор анализ микроструктуры бумаги из углеродного волокна в режиме реального времени с высоким разрешением был невозможен. Это связано с тем, что для получения точных результатов анализа требуется процесс, при котором образец бумаги из углеродного волокна повреждается, а затем подвергается детальному исследованию с помощью электронного микроскопа. Чтобы устранить ограничения существующих методов анализа, исследовательская группа разработала технологию, которая анализирует микроструктуру бумаги из углеродного волокна с помощью рентгеновской диагностики и модели обучения изображений на основе искусственного интеллекта. Примечательно, что эта технология позволяет проводить точный анализ только с помощью рентгеновской томографии, исключая необходимость использования электронного микроскопа. В результате она позволяет проводить диагностику состояния практически в режиме реального времени. Исследовательская группа извлекла 5 000 изображений из более чем 200 образцов бумаги из углеродного волокна и обучила алгоритм машинного обучения на этих данных. В результате обученная модель смогла предсказать трехмерное распределение и расположение ключевых компонентов углеволоконной бумаги — углеродных волокон, связующих и покрытий — с точностью более 98%. Эта возможность позволяет сравнивать исходное состояние бумаги из углеродного волокна с ее текущим состоянием, что дает возможность немедленно выявить причины ухудшения характеристик. Традиционный метод анализа, включающий дробление образцов бумаги из углеродного волокна и использование электронного микроскопа, занимает не менее 2 часов. В отличие от этого, модель анализа, разработанная исследовательской группой, позволяет определить деградацию, поврежденные участки и степень повреждения бумаги из углеродного волокна в течение нескольких секунд, используя только рентгеновское томографическое оборудование. Кроме того, исследовательская группа использовала данные разработанной модели для систематического определения того, как такие факторы конструкции, как толщина бумаги из углеродного волокна и содержание связующего вещества, влияют на производительность топливного элемента. Они также извлекли оптимальные параметры конструкции и предложили идеальный план проектирования, направленный на повышение эффективности топливных элементов. Доктор Чи-Юнг Юнг, ведущий исследователь, заявил:
Ранее ученые выяснили, как повысить эффективность топливных элементов. 31.12.2024 |
Энергия
AppEn: ИИ проворнее человека находит причины неисправностей топливных элементов | |
Исследовательская группа доктора Чи-Юнг Юнга и... |
Эффективны ли солнечные панели при непрямом солнечном свете? Ученые говорят — да | |
Когда люди думают о солнечной энергии, он... |
Застройщики жилья используют инновации для экономии на коммунальных платежах | |
По мере того как экологичная жизнь превра... |
Криптографический протокол обеспечит безопасный обмен данными в ветроэнергетике | |
Плавучая ветроэнергетика обладает огромным пот... |
Предложен новый способ получения водорода из воды с помощью солнечной энергии | |
Специалисты в области нанохимии добились ... |
AM&I: Пористые электроды из оксида кремния — прорыв в хранении энергии | |
Батареи стали неотъемлемым компонентом совреме... |
AC: Разработаны безопасные и стабильные батареи на основе цинка | |
Перезаряжаемые литий-ионные батареи питают все... |
Появилась концепция устойчивых полимерных электролитов для топливных элементов | |
Исследовательская группа под руководством... |
В МИСИС разработали термоэлектрик для зеленой энергетики | |
Новый метод производства материалов, которые м... |
Energy: Появилось инновационное решение для получения солнечной энергии с небес | |
Некоторые места не слишком благоприятны д... |
PhysRevLett: Найден способ улучшить аккумуляторы с помощью квантовой механики | |
В последние годы ученые работают над новы... |
NF: Выравнивание спина для термоядерного топлива удешевит ядерную энергию | |
Новое исследование предлагает способ, как ... |
Челябинские ученые создали систему управления объектами электроэнергетики | |
Программу для управления объектами электр... |
В ТПУ создали новые вещества, которые помогают получать водород с помощью света | |
Новый материал, который может помочь получать ... |
Energy & Fuels: Отработанное масло пустят в ход — на переработку в биодизель | |
Новый способ производства биодизеля из от... |
Эксперт ТИСБИ дал оценку готовности Татарстана к переходу на водород | |
Мировой рынок водородной энергетики к 203... |
PRX Energy: Открыты перспективные материалы для термоядерных реакторов | |
Ядерный синтез может стать идеальным решением ... |
PNAS Nexus: Ученые воссоздали в лаборатории ключевой элемент фотосинтеза | |
Человек научился делать многое, но у ... |
J. Mater. Chem. A: Литий-ионные батареи станут безопаснее и эффективнее | |
Новое объяснение эффекта этиленкарбоната ... |
EPSR: ИИ повысит надежность электросетей с учетом роста энергопотребления | |
Из-за распространения возобновляемых источнико... |
APL: Исследователи изучают фотоэлектрический феномен в перспективном материале | |
Необычный фотовольтаический эффект, BPV, в&nbs... |
Frontiers in Energy: Катализатор Fe-N-C превзойдет платину в топливных элементах | |
Топливные элементы и металловоздушные бат... |
Matter: Гибридные перовскиты прокладывают путь к новым лазерам и светодиодам | |
Исследователи разработали методику создания сл... |
В Пермском Политехе создали установку для исследования новых видов топлива | |
Учёные исследуют новый вид горючего ... |
Chemistry of Materials: Открыт перспективный твердый электролит из наночастиц | |
Аккумуляторы играют важную роль в совреме... |
Водные системы могут помочь ускорить внедрение возобновляемых источников энергии | |
Системы водоснабжения помогают сделать возобно... |
Nature Nanotechnology: Решена ключевая проблема натрий-ионных батарей | |
Литий-ионные батареи широко используются в&nbs... |
JAC: Ученые исследовали эффективность пьезокатализа Bi2WO6-x | |
Пьезокатализ — перспективная эколог... |
NatSustain: Новый материал катода может произвести революцию в хранении энергии | |
Недорогой катод, который может улучшить литий-... |
eScience: С помощью реактивной химии ученые создали анод без дендритов | |
Металлические калиевые батареи, МБК &mdas... |