Полностью твердотельные литий-ионные батареи с твердым электролитом не воспламеняются и имеют более высокую плотность энергии и передаточное число, чем батареи с жидким электролитом. Ожидается, что они займут часть рынка традиционных литий-ионных батарей с жидким электролитом, например, в электромобилях. Однако, несмотря на эти преимущества, твердые электролиты имеют более низкую литий-ионную проводимость и создают трудности в достижении адекватного контакта электрода с твердым электролитом. Хотя твердые электролиты на основе сульфидов являются проводящими, они реагируют с влагой, образуя токсичный дисульфид водорода. Поэтому для создания безопасных, высокопроизводительных и быстрозаряжающихся твердотельных литий-ионных аккумуляторов необходимы несульфидные твердые электролиты, которые были бы одновременно проводящими и стабильными на воздухе. В недавнем исследовании, опубликованном в журнале Chemistry of Materials 28 марта 2024 года, исследовательская группа под руководством профессора Кенджиро Фуджимото, профессора Акихиса Аими из Токийского научного университета и доктора Шухея Йошида из DENSO CORPORATION обнаружила стабильный и высокопроводящий литий-ионный проводник в виде оксифторида типа пирохлора. По словам профессора Фудзимото, «создание полностью твердотельных литий-ионных вторичных батарей было давней мечтой многих исследователей аккумуляторов. Мы открыли оксидный твердый электролит, который является ключевым компонентом полностью твердотельных литий-ионных батарей, обладающих высокой плотностью энергии и безопасностью. Помимо того, что материал стабилен на воздухе, он обладает более высокой ионной проводимостью, чем ранее описанные оксидные твердые электролиты». Оксифторид пирохлорного типа, изученный в данной работе, обозначается как Li2-xLa (1+x)/3M2O6F (M = Nb, Ta). Его подвергли структурному и композиционному анализу с использованием различных методов, включая рентгеновскую дифракцию, анализ Ритвельда, оптико-эмиссионную спектрометрию с индуктивно связанной плазмой и дифракцию электронов в выбранной области. В частности, был разработан Li1.25La0.58Nb2O6F, продемонстрировавший объемную ионную проводимость 7,0 мСм-см¹ и общую ионную проводимость 3,9 мСм-см¹ при комнатной температуре. Этот показатель оказался выше, чем литий-ионная проводимость известных оксидных твердых электролитов. Энергия активации ионной проводимости этого материала чрезвычайно низка, а ионная проводимость этого материала при низкой температуре является одной из самых высоких среди известных твердых электролитов, в том числе и на основе сульфидов. Именно так, даже при температуре -10 °C новый материал имеет такую же проводимость, как и обычные твердые электролиты на основе оксидов при комнатной температуре. Кроме того, поскольку была подтверждена проводимость при температуре выше 100 °C, рабочий диапазон этого твердого электролита составляет от -10 °C до 100 °C. Обычные литий-ионные батареи нельзя использовать при температуре ниже нуля. Поэтому условия эксплуатации литий-ионных батарей для широко используемых мобильных телефонов составляют от 0 °C до 45 °C. Был исследован механизм литий-ионной проводимости в этом материале. Путь проводимости структуры типа пирохлора охватывает ионы F, расположенные в туннелях, созданных октаэдрами MO6. Механизм проводимости заключается в последовательном перемещении ионов Li- при изменении связей с ионами F. Ионы Li движутся к ближайшей позиции Li, всегда проходя через метастабильные позиции. Неподвижный La3+, связанный с ионами F, препятствует проводимости ионов Li-, блокируя путь проводимости и исчезая из окружающих метастабильных позиций. В отличие от существующих вторичных литий-ионных батарей, все твердотельные батареи на основе оксида не подвержены риску утечки электролита в результате повреждения и выделения токсичных газов, как в случае с батареями на основе сульфида. Поэтому ожидается, что эта новинка станет лидером будущих исследований.
Примечательно, что новый материал отличается высокой стабильностью и не воспламеняется при повреждении. Он подходит для использования в самолетах и других местах, где безопасность имеет решающее значение. Он также подходит для использования в высокопроизводительных устройствах, таких как электромобили, поскольку может применяться при высоких температурах и поддерживает быструю зарядку. Кроме того, это перспективный материал для миниатюризации батарей, бытовой техники и медицинских приборов. Таким образом, исследователи не только обнаружили литий-ионный проводник с высокой проводимостью и стабильностью на воздухе, но и представили новый тип суперионного проводника с оксифторидом типа пирохлора. Изучение локальной структуры вокруг лития, их динамических изменений в процессе проводимости и их потенциал в качестве твердых электролитов для полностью твердотельных батарей — важные области для будущих исследований. 02.04.2024 |
Энергия
В Пермском Политехе создали установку для исследования новых видов топлива | |
Учёные исследуют новый вид горючего ... |
Chemistry of Materials: Открыт перспективный твердый электролит из наночастиц | |
Аккумуляторы играют важную роль в совреме... |
Водные системы могут помочь ускорить внедрение возобновляемых источников энергии | |
Системы водоснабжения помогают сделать возобно... |
Nature Nanotechnology: Решена ключевая проблема натрий-ионных батарей | |
Литий-ионные батареи широко используются в&nbs... |
JAC: Ученые исследовали эффективность пьезокатализа Bi2WO6-x | |
Пьезокатализ — перспективная эколог... |
NatSustain: Новый материал катода может произвести революцию в хранении энергии | |
Недорогой катод, который может улучшить литий-... |
eScience: С помощью реактивной химии ученые создали анод без дендритов | |
Металлические калиевые батареи, МБК &mdas... |
Система искусственного фотосинтеза производит этилен с высочайшей эффективностью | |
Чтобы использовать CO₂ для создания эколо... |
NatComm: Инженеры создают долговечный и дешевый электролит для аккумуляторов | |
Возобновляемые источники энергии, такие как&nb... |
В ЛЭТИ создали цифрового двойника для оптимизации солнечных электростанций | |
Рост населения и развитие технологий прив... |
EES Catalysis: Новые ячейки превращают углекислый газ в экологичное топливо | |
Новый метод переработки бикарбонатного раствор... |
ACS Energy Letters: Новую батарею можно резать, можно бить — все равно работает | |
В большинстве аккумуляторов для портативн... |
Nature Climate Change: Богатые тоже пачкают атмосферу | |
Углеродный след богатых людей в обществе ... |
Учёные НИУ МЭИ создали энергоустановку на основе бионических технологий | |
Исследователи создали энергоустановку для ... |
Кремний с высокой площадью поверхности улучшает реакцию CO2 на свету | |
Учёные работают над превращением углекисл... |
В ЛЭТИ улучшили свойства материала для более долговечных солнечных батарей | |
Исследователи создали наноматериалы, которые с... |
Nature Electronics: Создан напалечный трекер здоровья, черпающий энергию из пота | |
Устройство, работающее от пота, позволяет... |
Nature Sustainability: Электролиты на основе нафталина пригодятся для батарей | |
ORAM — это органические редокс... |
Science: В США разрабатывают метод переработки лопастей ветряных турбин | |
Исследователи из Национальной лаборатории... |
Терагерцовая спектроскопия позволяет следить за старением перовскитовых пленок | |
Гибридные перовскиты могут использоваться в&nb... |
Scientific Reports: Создан новый храповик с геометрически симметричной шестерней | |
Храповой механизм — это систем... |
Инженеры MIT разрабатывают крошечные батареи для питания роботов | |
Маленькие словно песчинки цинково-воздушные ба... |
JPE: Листоподобные концентраторы повысят эффективность солнечной энергии | |
Люминесцентный солнечный концентратор, ил... |
Учёные ТПУ разработали катализатор для водорода, который в 7 раз лучше аналогов | |
Учёные молодёжной лаборатории ТПУ совмест... |
Полупрозрачные солнечные панели для окон стали эффективнее | |
Учёные НИТУ МИСИС разработали новый метод ионн... |
ESM: Учёные предложили конструкцию катодного композита для твердотельных батарей | |
Исследователи из Кореи объединились, чтоб... |
JACS: Ученые выяснили, как повысить эффективность фотокатализа | |
Фотокаталитическое выделение водорода из ... |
Биоуголь из морских растений оценили как перспективный материал для катодов | |
Исследователи из Сахалинского государстве... |
Учёные КФУ разработали новые материалы для металл-ионных аккумуляторов | |
Учёные Института физики Казанского федеральног... |
Ученые Казанского ГАУ разработали технологию получения топлива из соломы | |
Исследователи из Казанского государственн... |