NatMat: Ученые из университета Райса нашли отличную альтернативу ферроэлектрикам

Зажечь газовый гриль, воспользоваться ультразвуковой зубной щеткой — эти действия связаны с использованием материалов, способных преобразовывать электрическое напряжение в изменение формы и наоборот.

Пьезоэлектричество или способность к обмену между механическим напряжением и электрическим зарядом можно применять в конденсаторах, приводах, преобразователях и датчиках, таких как акселерометры и гироскопы, для электроники нового поколения. Однако интеграция этих материалов в миниатюрные системы затруднялась из-за того, что электромеханически активные материалы в субмикрометрическом масштабе, когда толщина составляет всего несколько миллионных долей дюйма, блокирует материал, к которому они прикрепляются, что значительно снижает их производительность.

Исследователи Университета Райса и сотрудники Калифорнийского университета в Беркли обнаружили, что класс электромеханически активных материалов, называемых антиферроэлектриками, может стать ключом к преодолению ограничений производительности, связанных с зажимами в миниатюрных электромеханических системах.

В новом исследовании, опубликованном в журнале Nature Materials, сообщается, что модель антиферроэлектрика, цирконат свинца (PbZrO3), создает электромеханический отклик, который может в пять раз превышать отклик обычных пьезоэлектрических материалов даже в пленках толщиной всего 100 нанометров (или 4 миллионные доли дюйма).

Мы используем пьезоэлектрические материалы уже несколько десятилетий, — говорит материаловед из Райса Лейн Мартин, который является автором-корреспондентом исследования.

В последнее время появилась сильная мотивация для дальнейшей интеграции этих материалов в новые типы устройств, которые очень малы, как, например, микрочип, который находится внутри вашего телефона или компьютера. Проблема в том, что эти материалы, как правило, менее пригодны для использования в таких малых масштабах.

Согласно существующим промышленным стандартам, материал считается обладающим очень хорошими электромеханическими характеристиками, если он может претерпевать изменение формы на 1% ⎯ или деформацию ⎯ в ответ на воздействие электрического поля. Например, для объекта длиной 100 дюймов увеличение или уменьшение длины на 1 дюйм означает деформацию на 1%.

С точки зрения материаловедения, это значительная реакция, поскольку большинство твердых материалов могут изменяться лишь на доли процента, — говорит Мартин, профессор Роберт А. Уэлч, профессор материаловедения и наноинженерии и директор Института передовых материалов Райса.

Когда обычные пьезоэлектрические материалы уменьшаются до систем размером менее микрометра (1000 нанометров), их характеристики обычно значительно ухудшаются из-за вмешательства подложки, которая гасит их способность менять форму в ответ на электрическое поле или, наоборот, генерировать напряжение в ответ на изменение формы».

По словам Мартина, если оценивать электромеханические характеристики по шкале 1-10, где 1 — самая низкая эффективность, а 10 — промышленный стандарт 1% деформации, то зажим, как правило, снижает электромеханический отклик обычных пьезоэлектриков с 10 баллов до диапазона 1-4.

Чтобы понять, как зажим влияет на движение, представьте себе, что вы сидите на среднем сиденье в самолете, а по обе стороны от вас никого нет — вы можете свободно менять свое положение, если вам неудобно, вы перегрелись и т. д, — говорит Мартин.

Представьте себе тот же сценарий, только теперь вы сидите между двумя огромными нападающими из футбольной команды Райса. Вы будете «зажаты» между ними так, что не сможете существенно изменить свое положение в ответ на раздражитель.

Исследователи хотели понять, как очень тонкие пленки антиферроэлектриков — класса материалов, который до недавнего времени оставался малоизученным из-за отсутствия доступа к «модельным» версиям материалов и их сложной структуры и свойств, — меняют свою форму в ответ на напряжение и подвержены ли они такому же зажатию.

Сначала они вырастили тонкие пленки модельного антиферроэлектрического материала PbZrO3 с очень тщательным контролем толщины, качества и ориентации материала. Затем они провели ряд электрических и электромеханических измерений, чтобы количественно оценить реакцию тонких пленок на приложенное электрическое напряжение.

Мы обнаружили, что в тонких пленках антиферроэлектрического материала отклик значительно больше, чем в аналогичных геометриях традиционных материалов, — говорит Хао Пан, постдокторант исследовательской группы Мартина и ведущий автор исследования.

Измерение изменения формы на таких малых масштабах было непростой задачей. На самом деле, оптимизация измерительной установки потребовала так много труда, что исследователи задокументировали этот процесс в отдельной публикации.

С помощью усовершенствованной измерительной установки мы можем получить разрешение в два пикометра — это примерно тысячная доля нанометра, — отмечает Пан.

Но просто показать, что изменение формы произошло, еще не означает, что мы понимаем, что происходит, поэтому нам пришлось объяснить это. Это одно из первых исследований, раскрывающих механизмы, лежащие в основе такой высокой производительности.

При поддержке своих коллег из Массачусетского технологического института исследователи использовали современный просвечивающий электронный микроскоп, чтобы наблюдать за изменением формы наноразмерного материала с атомным разрешением в режиме реального времени.

Другими словами, мы наблюдали за электромеханическим приводом в процессе работы, чтобы увидеть механизм значительного изменения формы, — говорит Мартин.

Мы обнаружили, что под действием электрического напряжения происходит изменение кристаллической структуры материала, которая является как бы фундаментальной строительной единицей или одним типом блока Lego, из которого построен материал. В данном случае этот блок Lego обратимо растягивается при приложении электрического напряжения, что дает нам большой электромеханический отклик.

Удивительно, но исследователи обнаружили, что зажим не только не мешает работе материала, но и, наоборот, улучшает ее. Вместе с коллегами из Национальной лаборатории Лоуренса Беркли и Дартмутского колледжа они воссоздали материал с помощью вычислений, чтобы получить еще одно представление о том, как зажим влияет на срабатывание при приложении электрического напряжения.

Наши результаты — это кульминация многолетней работы над родственными материалами, включая разработку новых методов их исследования, — заключает Мартин.

Выяснив, как заставить эти тонкие материалы работать лучше, мы надеемся создать более компактные и мощные электромеханические устройства или микроэлектромеханические системы (MEMS) ⎯ и даже наноэлектромеханические системы (NEMS) ⎯ которые потребляют меньше энергии и могут делать то, о чем мы раньше и не подозревали.

24.05.2024


Подписаться в Telegram



Энергия

Инженеры MIT разрабатывают крошечные батареи для питания роботов
Инженеры MIT разрабатывают крошечные батареи для питания роботов

Маленькие словно песчинки цинково-воздушные ба...

Полупрозрачные солнечные панели для окон стали эффективнее
Полупрозрачные солнечные панели для окон стали эффективнее

Учёные НИТУ МИСИС разработали новый метод ионн...

JACS: Ученые выяснили, как повысить эффективность фотокатализа
JACS: Ученые выяснили, как повысить эффективность фотокатализа

Фотокаталитическое выделение водорода из ...

Учёные КФУ разработали новые материалы для металл-ионных аккумуляторов
Учёные КФУ разработали новые материалы для металл-ионных аккумуляторов

Учёные Института физики Казанского федеральног...

IEEE Access: Ученые открыли доступ к данным о работе электрических сетей
IEEE Access: Ученые открыли доступ к данным о работе электрических сетей

Исследователи из Национальной лаборатории...

Energy Materials and Devices: Создан тандемный солнечный элемент с КПД более 20%
Energy Materials and Devices: Создан тандемный солнечный элемент с КПД более 20%

Группа исследователей впервые продемонстрирова...

JRSNZ: Ветряные электростанции могут компенсировать выбросы за 2 года
JRSNZ: Ветряные электростанции могут компенсировать выбросы за 2 года

Ветряная электростанция, проработав менее двух...

EGU: В золоте дураков все-таки нашли ценный компонент
EGU: В золоте дураков все-таки нашли ценный компонент

Не зря авиакомпании не разрешают сда...

Поиск на сайте

Знатоки клуба инноваций


ТОП - Новости мира, инновации

PNAS: В тропосфере микробы могут путешествовать на тысячи километров
PNAS: В тропосфере микробы могут путешествовать на тысячи километров
FBINF: Искать триггеры рака стало проще — на помощь пришел компьютерный алгоритм
FBINF: Искать триггеры рака стало проще — на помощь пришел компьютерный алгоритм
Nature Photonics: Уникальный нанодиск продвигает исследования в области фотоники
Nature Photonics: Уникальный нанодиск продвигает исследования в области фотоники
PRSBBS: Эволюция крошечной косточки в колене помогла человеку ходить прямо
PRSBBS: Эволюция крошечной косточки в колене помогла человеку ходить прямо
Nature Biotechnology: Генетический алфавит расширили для создания новых белков
Nature Biotechnology: Генетический алфавит расширили для создания новых белков
ACS Central Science: Углеводные полимеры помогут очистить воду от загрязнителей
ACS Central Science: Углеводные полимеры помогут очистить воду от загрязнителей
Как общение человека и собаки влияет на мозг?
Как общение человека и собаки влияет на мозг?
New Phytologist: Длинные стебли цветов помогают мышам находить и опылять их
New Phytologist: Длинные стебли цветов помогают мышам находить и опылять их
JAMA Otolaryngology: Проблемы с горлом влияют на регуляцию кровяного давления
JAMA Otolaryngology: Проблемы с горлом влияют на регуляцию кровяного давления
«Зелёное» финансирование сокращает выбросы CO2 и помогает экономическому росту
«Зелёное» финансирование сокращает выбросы CO2 и помогает экономическому росту
Nature: Погибшие при воспалении клетки «сообщают» о потребности заживления раны
Nature: Погибшие при воспалении клетки «сообщают» о потребности заживления раны
Imaging Neuroscience: Устройство для визуализации мозга поможет понять аутизм
Imaging Neuroscience: Устройство для визуализации мозга поможет понять аутизм
Scientific Reports: У рыб обнаружены зачатки самосознания
Scientific Reports: У рыб обнаружены зачатки самосознания
Development: Разработан новый метод доставки грузов в яйцеклетки
Development: Разработан новый метод доставки грузов в яйцеклетки
Росатом и НИЯУ МИФИ открыли диджитал-центр в университете «Сириус»
Росатом и НИЯУ МИФИ открыли диджитал-центр в университете «Сириус»

Новости компаний, релизы

Впервые выбирают MITEX: дебютанты выставки 2024 года
Ученые Казанского аграрного университета нашли способ повысить урожайность картофеля в Татарстане
Форум стран Шанхайской организации сотрудничества
Сколтех и МФТИ создадут новый образовательный продукт – совместную магистратуру с двойным дипломом
Круглый стол «Наука продвигать» пройдёт в эту субботу