Цинк — дешевый, распространенный, экологически чистый — может стать ответом на вопрос о создании более совершенных батарей, однако существует серьезная проблема: водные цинк-ионные батареи, AZIB, не могут сравниться с литий-ионными батареями по мощности. Чтобы проверить, какой состав электродного материала может позволить довести AZIB до нужного уровня, исследовательская группа из Китая разработала два органических каркаса с одинаковыми компонентами, но расположенными по-разному. При испытании оказалось, что каркас с соответствующей плотностью активных участков — мест, где ионы цинка получают электроны для подзарядки аккумулятора, — показал лучшие результаты. Результаты исследователи опубликовали в журнале Energy Materials and Devices.
Органические материалы, составляющие катод, в котором функциональные группы в ходе реакций заряда и разряда попеременно окисляются и восстанавливаются, что соответствует поглощению и высвобождению ионов цинка, представляют собой молекулы, расположенные в кристаллической форме. Эти молекулы содержат активные участки, на которых ионы вступают в реакцию и привлекают электроны. Однако неорганические молекулы могут вместить ограниченное число реакций и поддерживать их в течение конечного времени, прежде чем подвергнутся распаду.
В первом КОФ использовалась органическая молекула бензохиноксалинбензохинона (BB-COF), а во втором — трихиноксалиленбензохинона (TB-COF). Оба каркаса имеют кольцевую форму с одинаковым количеством энергетических групп в каждом. В энергетических группах располагаются активные участки — атомы углерода, соединенные с кислородом или азотом. BB-COF также был крупнее, энергетические группы располагались дальше друг от друга. Молекула TB-COF была в целом более плотной, но энергетические группы BB-COF были более разреженными и содержали активные участки. И это, по мнению Ли, является ключом к лучшим электрохимическим характеристикам.
Исследователи проанализировали химический состав и морфологию COF, определив, что больший диаметр BB-COF обеспечивает быстрый транспорт ионов и более эффективное использование активных участков. При комнатной температуре после 10 000 циклов удельная емкость BB-COF составила 72 миллиампер-часа на грамм массы. Удельная емкость TB-COF снизилась до 40 миллиампер-часов на грамм массы.
21.11.2023 |
Энергия
EES Catalysis: Новые ячейки превращают углекислый газ в экологичное топливо | |
Новый метод переработки бикарбонатного раствор... |
ACS Energy Letters: Новую батарею можно резать, можно бить — все равно работает | |
В большинстве аккумуляторов для портативн... |
Nature Climate Change: Богатые тоже пачкают атмосферу | |
Углеродный след богатых людей в обществе ... |
Учёные НИУ МЭИ создали энергоустановку на основе бионических технологий | |
Исследователи создали энергоустановку для ... |
Кремний с высокой площадью поверхности улучшает реакцию CO2 на свету | |
Учёные работают над превращением углекисл... |
В ЛЭТИ улучшили свойства материала для более долговечных солнечных батарей | |
Исследователи создали наноматериалы, которые с... |
Nature Electronics: Создан напалечный трекер здоровья, черпающий энергию из пота | |
Устройство, работающее от пота, позволяет... |
Nature Sustainability: Электролиты на основе нафталина пригодятся для батарей | |
ORAM — это органические редокс... |
Science: В США разрабатывают метод переработки лопастей ветряных турбин | |
Исследователи из Национальной лаборатории... |
Терагерцовая спектроскопия позволяет следить за старением перовскитовых пленок | |
Гибридные перовскиты могут использоваться в&nb... |
Scientific Reports: Создан новый храповик с геометрически симметричной шестерней | |
Храповой механизм — это систем... |
Инженеры MIT разрабатывают крошечные батареи для питания роботов | |
Маленькие словно песчинки цинково-воздушные ба... |
JPE: Листоподобные концентраторы повысят эффективность солнечной энергии | |
Люминесцентный солнечный концентратор, ил... |
Учёные ТПУ разработали катализатор для водорода, который в 7 раз лучше аналогов | |
Учёные молодёжной лаборатории ТПУ совмест... |
Полупрозрачные солнечные панели для окон стали эффективнее | |
Учёные НИТУ МИСИС разработали новый метод ионн... |
ESM: Учёные предложили конструкцию катодного композита для твердотельных батарей | |
Исследователи из Кореи объединились, чтоб... |
JACS: Ученые выяснили, как повысить эффективность фотокатализа | |
Фотокаталитическое выделение водорода из ... |
Биоуголь из морских растений оценили как перспективный материал для катодов | |
Исследователи из Сахалинского государстве... |
Учёные КФУ разработали новые материалы для металл-ионных аккумуляторов | |
Учёные Института физики Казанского федеральног... |
Ученые Казанского ГАУ разработали технологию получения топлива из соломы | |
Исследователи из Казанского государственн... |
Новая технология фотоэлектрических модулей оптимизирована для городских условий | |
Исследовательская группа доктора Сын-Иль Ча&nb... |
IEEE Access: Ученые открыли доступ к данным о работе электрических сетей | |
Исследователи из Национальной лаборатории... |
Авроры вызваны ударами по магнитному полю Земли — это опасно для инфраструктуры | |
Авроры, или северное сияние, на прот... |
Гексагональные перовскиты — новое слово в технологии топливных элементов | |
Это исследование представляет собой значительн... |
Разгадана тайна снижения производительности перспективного катодного материала | |
Первое поколение литий-ионных аккумуляторов дл... |
NatMat: Ученые из университета Райса нашли отличную альтернативу ферроэлектрикам | |
Зажечь газовый гриль, воспользоваться ультразв... |
Energy Materials and Devices: Создан тандемный солнечный элемент с КПД более 20% | |
Группа исследователей впервые продемонстрирова... |
JRSNZ: Ветряные электростанции могут компенсировать выбросы за 2 года | |
Ветряная электростанция, проработав менее двух... |
EGU: В золоте дураков все-таки нашли ценный компонент | |
Не зря авиакомпании не разрешают сда... |
Инженеры создают более выгодную сеть для распределения солнечной энергии | |
Если вы являетесь Независимым системным о... |