Исследователи из Tokyo Metropolitan University раскрыли физику распределения пены по поверхности. Для этого они соскабливали пластиной и наблюдали за шариками пенопласта, помещенными на плоскую подложку. Ученые выявили различные закономерности, которые сильно зависят от скорости соскабливания и управляются конкурирующими физическими явлениями. Полученные результаты применимы ко всем видам мягких материалов, которые необходимо равномерно распределить по поверхности, — от майонеза на хлебе до утеплителя на стенах. Будь то пена для бритья, утеплитель в стенах или маргарин на тосте, распределение мягких материалов по плоским поверхностям является важным процессом как с практической, бытовой точки зрения, так и для оптимизации промышленных процессов. Однако о поведении пенопластов при растекании известно на удивление мало, особенно когда речь идет о том, как плоская лопатка или пластина может соскрести его по поверхности в слой. Это вдохновило исследователей под руководством профессора Рея Куриты (Rei Kurita) из Токийского университета (Tokyo Metropolitan University) на более детальное изучение происходящего. Они создали на плоской поверхности небольшие купола из пены моющего средства и соскребли их акриловой пластиной, следя за тем, чтобы расстояние между пластиной и поверхностью оставалось неизменным. За всем этим процессом велось углубленное наблюдение с помощью видеокамеры. Любопытно, что при изменении скорости движения пластины полностью меняется способ растекания пены, а также степень сродства жидкости в пене к поверхности, т.е. гидрофильность (притягивание воды) или гидрофобность (отталкивание воды). На гидрофобной поверхности при малых скоростях скребка пена растекается равномерно, образуя длинный участок такой же ширины, как и исходный купол. Однако при увеличении скорости пена уже не растекается, а движется по поверхности на тонком слое жидкости; пластина движется, оставляя за собой совсем немного пены. Наконец, при самых высоких скоростях, на которых проводились испытания, режим растекания возвращается, только теперь ширина хвоста пены тоньше, чем первоначальный купол. С другой стороны, на гидрофильной поверхности от первого режима не осталось и следа. Разница, наблюдаемая между двумя поверхностями, заставила команду сосредоточиться на эффекте «смачивания», т.е. на том, любит ли жидкость в пене покрывать поверхность. Сфокусировавшись на появлении низкоскоростного режима, они обнаружили, что на гидрофобных поверхностях пленки моющего средства, входящие в состав пены, стремятся закрепиться на поверхности, поскольку жидкость имеет тенденцию к „смачиванию“. Возникает картина, при которой пена просто постепенно вытесняется из купола пластиной по мере ее движения. Однако если пена движется достаточно быстро, чтобы смочить поверхность, то у ее основания появляется смазочный слой. Стенки в пене, также известные как границы плато, уже не могут захватить подложку и зафиксироваться на месте. Вот почему при ускоренном движении пластины на месте первоначального купола остается тонкий участок пены, а остальная часть проталкивается по тонкому слою жидкости, не оставляя за собой ничего, кроме следа. В ходе исследования изучалась не только скорость вращения пластины, но и влияние ширины зазора и толщины пластины. Полученные командой результаты проливают свет на малоизвестные детали повседневного явления, оказывая значительное потенциальное влияние не только на пенопласты, но и на широкий спектр мягких материалов, будь то краска, защитные покрытия или майонез. Результаты опубликованы в издании Journal of Colloid and Interface Science. 29.07.2023 |
Хайтек
ASS: Энергоплотность углерода из рисовой шелухи на 50% больше графита | |
Новый вид углерода в золе от сг... |
В Корее нашли способ эффективного восстановления редкоземельных металлов | |
Корея импортирует 95% основных полезных ископа... |
Physical Review Letters: Разгадана тайна механизма выброса рентгеновских лучей | |
С 1960-х годов ученые, которые изучают рентген... |
«Электронные татуировки» вместо ЭЭГ: новая технология позволит «читать мысли» | |
Стандартные тесты электроэнцефалографии и... |
NatElec: Найден способ менять форму полупроводников: как это изменит электронику | |
Инженеры научились управлять изменениями формы... |
IEEE Access: Устройства смогут считывать человеческие эмоции без камеры | |
Ученые из Токийского столичного университ... |
В СПбГУ заставили катализаторы на основе платины перерабатывать зеленый свет | |
Новые вещества на основе платины создали ... |
В ПНИПУ нашли эффективное средство для очистки газотурбинного двигателя | |
Лопатки газотурбинного двигателя постоянно под... |
PNAS: Ученые объяснили, как твердые материалы становятся текучими | |
При каких условиях хлюпающие зерна могут вести... |
В МИФИ создан комплекс для проверки точности аппаратов МРТ | |
Магнитно-резонансная томография, или МРТ,... |
В ИТМО выяснили, как динамические системы переходят к хаосу | |
В Университете ИТМО ученые объяснили, как ... |
Applied Physics Express: Изобретен компактный лазер для дезинфекции | |
Первый в мире компактный синий полупровод... |
Ученые ЮУрГУ создают ковалентные каркасы — новый материал для оптики | |
Новые вещества под названием ковалентные ... |
Нагреватель будущего: как разработка студента МФТИ изменит наноэлектронику | |
Студент магистратуры Московского физико-технич... |
Выяснилось, что композиты с древесиной лучше выдерживают высокие температуры | |
Ученые из Российского экономического унив... |
Излучение 5G меняет ткани мозга крыс, но решать, плохо это или хорошо, пока рано | |
Ученые ТГУ провели эксперимент и про... |
Робот с винтовым двигателем сможет добывать полезные ископаемые на Луне | |
Экспериментальный робот показал, что може... |
Ученые создали элементы системы управления синхротронным пучком для СКИФа | |
Сотрудники университета и ученые из ... |
PNAS: Создан реактор для безопасной добычи лития из соляных растворов | |
Новое устройство, которое позволяет добывать л... |
Nature: Ученые исследуют строение ядер химических элементов с помощью лазеров | |
Группа ученых из разных стран попыталась ... |
Nature Nanotechnology: Новый материал охлаждает на 72% лучше любых термопаст | |
В местах, где хранятся и обрабатываю... |
NatComm: Учёные приблизились к созданию биополимеров, реагирующих на воду | |
Новый подход для понимания и предска... |
В Челябинске разрабатывают инновационное оборудование для вибрационных испытаний | |
Специалисты ЮУрГУ совместно с Уральским и... |
В ТПУ создали многоразовые накопители водорода из отечественного сырья | |
Более дешевые металлогидридные накопители водо... |
Новый подход к производству цифрового света решает проблемы 3D-печати | |
Новый метод производства цифрового света для&n... |
AEM: Гибридный полупроводник позволит лучше понять спинтронику | |
Электроны вращаются без электрического за... |
Томские ученые представили цифровое решение для оптимизации НПЗ | |
Новый программный комплекс представили ученые ... |
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью | |
Методику создания синтетических данных для&nbs... |
Численное моделирование повысит эффективность 3D-печати из стали 316LSi | |
Морская нержавейка, или сталь 316LSi, шир... |
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей | |
Новый сплав на основе алюминия создали ис... |