![]() |
Для того чтобы магнит прилип к дверце холодильника, внутри него должны идеально сработать несколько физических эффектов. Магнитные моменты его электронов направлены в одну сторону, даже если внешнее магнитное поле не заставляет их делать это. Это происходит благодаря так называемому обменному взаимодействию, представляющему собой комбинацию электростатического отталкивания между электронами и квантовомеханических эффектов спинов электронов, которые, в свою очередь, отвечают за магнитные моменты. Этим обычно объясняется тот факт, что некоторые материалы, такие как железо или никель, являются ферромагнитными, или постоянно магнитными, если не нагревать их выше определенной температуры. Группа исследователей из ETH в Цюрихе под руководством Атача Имамоглу из Института квантовой электроники и Юджина Демлера из Института теоретической физики обнаружила новый тип ферромагнетизма в искусственно созданном материале, в котором выравнивание магнитных моментов происходит совершенно иным образом. Свои результаты они недавно опубликовали в научном журнале Nature. Искусственный материал с электронным наполнениемВ лаборатории Имамоглу аспирант Ливио Чорчиаро, постдок Томаш Смоленски и их коллеги создали специальный материал, положив друг на друга атомарно тонкие слои двух различных полупроводниковых материалов (диселенида молибдена и дисульфида вольфрама). В плоскости контакта за счет различия постоянных решетки двух материалов — расстояния между их атомами — образуется двумерный периодический потенциал с большой постоянной решетки (в тридцать раз большей, чем у обоих полупроводников), который может быть заполнен электронами при приложении электрического напряжения.
Для изучения этих магнитных свойств Имамоглу и его коллеги измеряли, является ли муаровый материал при определенном заполнении электронами парамагнитным, со случайной ориентацией магнитных моментов, или ферромагнитным. Они освещали материал лазерным излучением и измеряли, насколько сильно отражается свет при различных поляризациях. Поляризация показывает, в каком направлении колеблется электромагнитное поле лазерного излучения, и в зависимости от ориентации магнитных моментов, а значит, и спинов электронов, материал будет отражать одну поляризацию сильнее, чем другую. Из этой разницы можно вычислить, в каком направлении направлены спины — в одном или в разных — и определить намагниченность. Поразительное доказательствоПостоянно увеличивая напряжение, физики заполняли материал электронами и измеряли соответствующую намагниченность. До заполнения ровно одного электрона на участок решетки Муаре (также известной как изолятор Мотта) материал оставался парамагнитным. Когда исследователи продолжили добавлять электроны в решетку, произошло нечто неожиданное: материал вдруг стал вести себя очень похоже на ферромагнетик.
В самом деле, если бы обменное взаимодействие было ответственно за магнетизм, то он должен был бы проявляться и при меньшем количестве электронов в решетке. Таким образом, внезапное возникновение магнетизма указывает на другой эффект. Кинетический магнетизмЮджин Демлер в сотрудничестве с постдоком Иваном Морерой наконец-то пришли к решающей идее: возможно, они рассматривают механизм, который теоретически предсказал японский физик Йосуке Нагаока еще в 1966 году. В этом механизме электроны, заставляя свои спины вращаться в одном направлении, минимизируют свою кинетическую энергию (энергию движения), которая намного больше обменной энергии. В эксперименте, проведенном исследователями ETH, это происходит, как только в муаровом материале на каждый участок решетки приходится более одного электрона. В результате пары электронов могут объединяться, образуя так называемые дублеты. Кинетическая энергия минимизируется, если дублеты могут распространяться по всей решетке за счет квантовомеханического туннелирования. Однако это возможно только в том случае, если отдельные электроны в решетке выравнивают свои спины ферромагнитным способом, поскольку в противном случае нарушаются эффекты квантовомеханической суперпозиции, обеспечивающие свободное расширение дублонов.
В качестве следующего шага он хочет изменить параметры муаровой решетки, чтобы исследовать, сохраняется ли ферромагнетизм при более высоких температурах; в текущем эксперименте материал все же пришлось охладить до десятых долей градуса выше абсолютного нуля. 15.11.2023 |
Хайтек
![]() | |
Скрутил — и работает: как угол поворота меняет сверхпроводимость | |
Ученые из RIKEN вместе с коллегами с... |
![]() | |
От фононов до туннелей: как тепло движется в сложных материалах | |
Органические полупроводники и металлоорга... |
![]() | |
Робот, который не боится бардака: как ИИ учится быть человеком | |
Представьте себе робота, который может пригото... |
![]() | |
Паутина будущего: как углеродные нити меняют носимую электронику | |
Команда доктора Хан Чжун Тарка из Ис... |
![]() | |
Химия роста: тамбовский «Пигмент» нашел замену импорту | |
Завод Пигмент в Тамбове продолжает активн... |
![]() | |
Точность и прочность: ученые напечатали огнеупоры без усадки | |
Ученые из Томского политехнического униве... |
![]() | |
Дыши глубже: новый способ производства перекиси водорода из воздуха | |
Пероксид водорода — это вещест... |
![]() | |
PRL: Иридий усиливает магнитные свойства сплава Fe-Co | |
Магнитные материалы — это осно... |
![]() | |
Буровая установка на лыжах: в Татарстане ученые ускорили добычу нефти | |
Ученые из Передовой инженерной нефтяной ш... |
![]() | |
Математику и металл объединили для идеальных труб | |
Объединенная металлургическая компания из ... |
![]() | |
Открытие, которое притягивает: новая технология производства магнитов | |
В Корейском институте материаловедения команда... |
![]() | |
Обзор мини-ПК OSIO BaseLine B51i: компактность и универсальность | |
Мини-ПК OSIO BaseLine B51i — это&nb... |
![]() | |
Луч, который зажигает звезды: в МИФИ собирают гигантский лазер | |
В НИЯУ МИФИ начали собирать огромный оптически... |
![]() | |
Секрет долговечности: как ученые заставили полимеры работать дольше | |
Ученые из Института проблем машиноведения... |
![]() | |
Литий без вреда для среды: как соленые озера стали источником чистой энергии | |
Исследователи придумали новый способ добычи ли... |
![]() | |
MXene в 3D-печати: прорыв в создании микроструктур | |
Исследовательская группа Smart 3D Printing из&... |
![]() | |
Холодный старт: как ученые заставили водород выделяться при низких температурах | |
Ученые из Томского политехнического униве... |
![]() | |
Бор и азот: как химики нашли ключ к новым материалам | |
Ученые придумали новый способ, как соедин... |
![]() | |
Не все то золото, что светит: перовскитные светодиоды на пути к успеху | |
Ученые из Университета Линчепинга доказал... |
![]() | |
PRB: Ученые упростили изучение квантовой запутанности | |
Когда-то Альберт Эйнштейн называл квантовую за... |
![]() | |
Разработана 3D-визуализация по образу стрекозы: новый шаг в технологиях | |
Технологии создания изображений не стоят ... |
![]() | |
Квантовый рывок: процессор Zuchongzhi-3 обогнал суперкомпьютеры | |
Группа ученых из Китайского университета ... |
![]() | |
Смотрите вглубь: как ИИ и гиперспектральная камера читают вашу ладонь | |
Гиперспектральная съемка — это ... |
![]() | |
Разработана одежда с секретом: проведите рукой — и она сработает | |
Команда ученых из Ноттингемского универси... |
![]() | |
Внимание, фермер: тамбовский дрон тебе товарищ | |
Группа ученых из Тамбовского государствен... |
![]() | |
Катализатор, который работает: ученые нашли замену дорогим металлам | |
Недавно ученые из Института науки Токио с... |
![]() | |
Финляндия запустила 50-кубитный компьютер: как это изменит науку и бизнес | |
Финляндия сделала большой шаг вперед в&nb... |
![]() | |
Оранжевый прорыв: как бор и углерод нашли общий язык | |
Бор, углерод, азот и кислород &mdash... |
![]() | |
Медь + графен: ученые создали материал для охлаждения электроники | |
Ученые придумали новый способ создавать легкие... |
![]() | |
Волгоградские ученые создали робота для вертикального перемещения | |
Ученые из Волгоградского государственного... |