Команда европейских и израильских физиков представила новый тип поляритонных полостей и пересмотрела границы ограничения света, сделав значительный скачок вперед в квантовой нанофотонике. Эта новаторская работа, подробно описанная в исследовании, опубликованном сегодня в журнале Nature Materials, демонстрирует нетрадиционный метод удержания фотонов, преодолевая традиционные ограничения в нанофотонике. Физики уже давно ищут способы заставить фотоны входить во все более малые объемы. Естественным масштабом длины фотона является длина волны, и когда фотон помещается в полость, размер которой намного меньше длины волны, он становится более «концентрированным». Такая концентрация усиливает взаимодействие с электронами, усиливая квантовые процессы внутри полости. Однако, несмотря на значительные успехи в удержании света в глубоких субволновых объемах, эффект диссипации (оптического поглощения) остается главным препятствием. Фотоны в нанополостях поглощаются очень быстро, гораздо быстрее длины волны, и эта диссипация ограничивает применимость нанополостей для некоторых из самых интересных квантовых приложений. Исследовательская группа профессора Франка Коппенса из ICFO в Барселоне (Испания) решила эту проблему, создав нанополости с беспрецедентным сочетанием субволнового объема и увеличенного времени жизни. Эти нанополости площадью менее 100x100 нм² и толщиной всего 3 нм удерживают свет в течение значительно более длительного времени. Ключ заключается в использовании гиперболических фонон-поляритонов, уникальных электромагнитных возбуждений, возникающих в двумерном материале, образующем полость. В отличие от предыдущих исследований полостей на основе фононных поляритонов, в данной работе используется новый и непрямой механизм удержания. Нанополости создаются путем сверления наноразмерных отверстий в золотой подложке с предельной (2-3 нанометра) точностью с помощью микроскопа He со сфокусированным ионным пучком. После создания отверстий поверх них наносится гексагональный нитрид бора (ГБН), двумерный материал. ГБН поддерживает электромагнитные возбуждения, называемые гиперболически-фотонными поляритонами, которые похожи на обычный свет, за исключением того, что они могут быть ограничены чрезвычайно малыми объемами. Когда поляритоны проходят над краем металла, они испытывают сильное отражение от него, что позволяет их ограничить. Таким образом, этот метод позволяет избежать непосредственного формирования ГБН и сохранить его первозданное качество, обеспечивая высокую концентрацию и долговечность фотонов в полости. Это открытие началось со случайного наблюдения, сделанного в ходе другого проекта при использовании оптического микроскопа ближнего поля для сканирования двумерных структур материалов. Микроскоп ближнего поля позволяет возбуждать и измерять поляритоны в среднем инфракрасном диапазоне спектра, и исследователи заметили необычно сильное отражение этих поляритонов от металлического края. Это неожиданное наблюдение послужило толчком к более глубокому исследованию, которое привело к пониманию уникального механизма удержания и его связи с формированием нанорешетки. Однако после изготовления и измерения полостей команду ждал огромный сюрприз.
06.02.2024 |
Нано
Свет — повелитель молекул: ученые совершили прорыв в химии | |
Ученые из Болонского университета под&nbs... |
Наночастицы селена помогут укрепить иммунитет и защитить сердце | |
Ученые создали наночастицы селена, которые мож... |
Студенты из Самары создали новое антимикробное покрытие для ткани | |
Студенты из университета имени Королева в... |
Живые «таймеры»: как молекулярные механизмы помогают организмам измерять время | |
Живые организмы следят за временем и ... |
Наносистема доставки молекул предвещает безопасную эру в разработке лекарств | |
Инновационную систему доставки лекарств, облад... |
JPC: Нанопузырьки совершат прорыв в эффективности химических реакций | |
Газы необходимы для многих химических реа... |
Сенсоры нового поколения: как молодые ученые ТулГУ приближают будущее медицины | |
Новые материалы, которые могут помочь в с... |
Nano Letters: Ученые научились делать нанотрубки, направленные в одну сторону | |
Впервые создали нанотрубки из дисульфида ... |
В Красноярске открыт новый двумерный материал из семейства валлериита | |
Ученые из Красноярска создали новый матер... |
AnChem: Открыт новый метод создания и усиления магнетизма в двумерных материалах | |
При толщине всего в несколько атомов двум... |
BiomatResearch: Наноразмерный анализ показал способ предотвращения эрозии зубов | |
Корейская исследовательская группа, которая ра... |
Золото в новом формате: ученые создали двумерные монослои золота для катализа | |
Исследователи создали почти отдельно стоящие н... |
В Сколтехе спроектировали датчик для обнаружения вредных веществ в воздухе | |
В Сколтехе разработали новый датчик, который м... |
Инженер придумал, как повысить чувствительность нанопор для обнаружения болезней | |
Новую технику в области нанотехнологий дл... |
В СПбГУ создали нанолисты цинка для систем очистки воды | |
Новый способ создания особых наночастиц нашли ... |
В СибГМУ снарядили против рака магнитные наночастицы | |
Ученые из Сибирского государственного мед... |
Как графен может изменить вашу жизнь: от питьевой воды до тепла в доме | |
Жидкости с добавлением графена высыхают п... |
Система доставки на основе экстракта семян нима повышает эффект нанопестицидов | |
Как сделать пестициды более эффективными и&nbs... |
Science Robotics: С помощью ДНК-оригами можно создавать медицинских роботов | |
Важное открытие в области молекулярной ро... |
В ТПУ научились управлять свойствами графена с помощью лазера | |
Как можно восстанавливать оксид графена с ... |
Ученые научились производить заживляющие наночастицы в промышленных масштабах | |
Новый метод производства специальных растворов... |
JACS: Открыт новый тип наночастиц гидрида палладия, которые запирают водород | |
Палладий — это редкий металл, ... |
PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене | |
К разгадке, почему электроны могут разделяться... |
FRI: Нанокапсулы с антоцианами делают привычные продукты полезнее | |
В ходе исследования ученые обнаружили, что&nbs... |
Nature Communications: Наночастицы с оснасткой находят белки в плазме крови | |
Новый способ, который поможет находить в ... |
NatElec: Нанотранзисторы преодолеют ограничения кремниевых полупроводников | |
Кремниевые транзисторы, которые используются д... |
Ученые создали устройство для хранения и передачи информации с помощью света | |
Устройство на основе углеродной нанотрубк... |
Созданы частицы с квантовыми точками для многоразового применения в биомедицине | |
Новые светящиеся микрочастицы, состоящие из&nb... |
В России доказали эффективность нанокомпозитов для лечения атеросклероза | |
Модифицированные нанокомпозиты для лечени... |
Science: Открыт новый метод выращивания полезных квантовых точек | |
Квантовые точки, или полупроводниковые на... |