Дома будущего будут расти как грибы
Ученые в надежде снизить воздействие строительной индустрии на окружающую среду разработали способ выращивания строительных материалов с помощью вязаных форм и корневой сети грибов.
Хотя исследователи уже проводили эксперименты с подобными композитами, ограничения, связанные с формой и ростом органического материала, затрудняли разработку. Используя вязаные формы в качестве гибкого каркаса или «опалубки», ученые создали композит под названием „микобетон“, который является более прочным и универсальным с точки зрения формы, позволяя выращивать легкие и относительно экологичные строительные материалы.
Наша цель — изменить внешний вид и восприятие архитектурного пространства, используя мицелий в сочетании с такими биологически чистыми материалами, как шерсть, опилки и целлюлоза, — говорит д-р Джейн Скотт из университета Ньюкасла, автор-корреспондент статьи в журнале Frontiers in Bioengineering and Biotechnology.
Исследование провели дизайнеры, инженеры и ученые в рамках исследовательской группы «Живой текстиль», входящей в состав Центра биотехнологий в искусственной среде при Ньюкаслском университете, который финансирует организация Research England.
Корневые сети
Для создания композитов с использованием мицелия, являющегося частью корневой сети грибов, ученые смешивают споры мицелия с зернами, которыми они могут питаться, и материалом, на котором они могут расти. Эта смесь упаковывается в форму и помещается в темную, влажную и теплую среду, чтобы мицелий мог расти, плотно скрепляя субстрат. После достижения нужной плотности, но до начала образования плодовых тел, которые мы называем грибами, смесь высушивается. Этот процесс может стать дешевой и экологичной заменой пенопласту, древесине и пластику. Однако для роста мицелия необходим кислород, что ограничивает размеры и форму обычных жестких форм и пока не позволяет использовать их.
Возможное решение предлагает вязынй текстиль — кислородопроницаемые формы, способные превращаться из гибких в жесткие по мере роста мицелия. Однако текстиль может быть слишком податливым, и его трудно последовательно упаковывать в формы. Скотт и ее коллеги задались целью разработать смесь мицелия и производственную систему, которые могли бы использовать потенциал вязаных форм.
Вязаные формы — это невероятно универсальная система 3D-производства, — говорит Скотт.
Она легкая, гибкая и пластичная. Основным преимуществом технологии вязания по сравнению с другими текстильными процессами является возможность вязать 3D-структуры и формы без швов и отходов.
В качестве контроля ученые приготовили образцы обычного мицелиального композита, которые выращивались вместе с образцами микобетона, также содержащего бумажный порошок, комки бумажных волокон, воду, глицерин и ксантановую камедь. Эта паста предназначалась для подачи в трикотажную опалубку с помощью инъекционного пистолета для улучшения консистенции упаковки: паста должна была быть достаточно жидкой для системы подачи, но не настолько жидкой, чтобы не держать форму.
Трубки для планируемой испытательной конструкции вязали из мериносовой пряжи, стерилизовали и крепили к жесткой конструкции на время заполнения их пастой, чтобы изменение натяжения ткани не влияло на характеристики микобетона.
Строим будущее
После высыхания образцы подвергались испытаниям на прочность при растяжении, сжатии и изгибе. Образцы микобетона оказались прочнее обычных образцов мицелиальных композитов и превзошли по прочности мицелиальные композиты, выращенные без трикотажной опалубки. Кроме того, пористая трикотажная ткань опалубки обеспечивала лучший доступ кислорода, а образцы, выращенные в ней, меньше усыхали, чем большинство композитных материалов из мицелия после высыхания, что позволяет говорить о более предсказуемых и стабильных результатах производства.
Благодаря гибкой трикотажной форме удалось создать более крупный прототип конструкции под названием BioKnit — сложный отдельно стоящий купол, выполненный в виде единой детали без соединений, которые могли бы оказаться слабыми местами.
Механические характеристики микобетона, используемого в сочетании с несъемной вязаной опалубкой, — это важный результат и еще один шаг к использованию мицелия и текстильных биогибридов в строительстве, — заключила Скотт.
В данной работе мы указали конкретные нити, субстраты и мицелий, необходимые для достижения конкретной цели. Однако существуют широкие возможности адаптации этой рецептуры для различных применений. Для продвижения текстиля в строительный сектор может потребоваться новая машинная технология.