Наноразмерное покрытие ускоряет работу катализаторов на основе наночастиц золота
Исследователи из Токийского столичного университета разработали способ добавления отдельных нанолистов смешанного оксида металла к наночастицам золота на основе диоксида кремния для повышения их каталитической активности.

Преобразуя монооксид углерода в диоксид углерода, они обнаружили, что температура, необходимая для реакции, значительно снижается, что существенно улучшает существующие методы покрытия структур из золота и кремния. Этот метод открывает путь к созданию широкого спектра новых высокоэффективных катализаторов.
Известно, что наночастицы золота — частицы диаметром менее пяти нанометров — являются отличными катализаторами химических реакций, в частности реакций окисления, таких как превращение вредного угарного газа в диоксид углерода. Эффект ярко выражен, когда они установлены на металлических оксидах, таких как оксид кобальта, которые с большей вероятностью подвергнутся противоположной реакции, то есть восстановительным оксидам. К сожалению, не все металлические оксиды являются восстановимыми. Наночастицы, установленные на невосстанавливаемых оксидах, таких как диоксид кремния, например, не являются эффективным катализатором. Учитывая изобилие кремнезема на нашей планете, способ улучшить характеристики таких материалов значительно ускорил бы их промышленное использование.
Это заставило ученых искать способы модификации поддерживаемых катализаторов для повышения их эффективности. Теперь команда под руководством доцента Тамао Ишиды из Токийского столичного университета разработала метод осаждения отдельных нанолистов смешанных оксидов металлов (MMOs) с помощью слоистых двойных гидроксидов (LDHs). LDH состоят из нанолистов гидроксида металла, в которых часть ионов металла заменена на ионы металла с более высоким зарядом, что придает самому листу чистый положительный заряд; листы связаны между собой отрицательными ионами. Важно, что отдельные нанолисты можно отшелушивать и использовать по отдельности. В данном исследовании команда покрыла золотые наночастицы на основе диоксида кремния — отрицательно заряженной структуры — положительно заряженными нанолистами LDH, состоящими из алюминия и ряда других металлов, а затем подвергла их воздействию высоких температур (прокаливанию), чтобы сформировать нанослой MMO.
Наблюдая за своим новым катализатором с помощью просвечивающей электронной микроскопии, они обнаружили, что наночастицы покрыты слоем толщиной менее одного нанометра. Чтобы проверить их эффективность, команда использовала их для преобразования монооксида углерода в диоксид углерода. В то время как наночастицы золота на диоксиде кремния имели скорость превращения около 20% даже при температуре 300 градусов Цельсия, новый катализатор показал скорость превращения 50% при температуре всего 50 градусов, то есть более чем на 250 градусов меньше. Также было обнаружено, что он превосходит популярные методы «пропитки» для нанесения покрытия MMO. Интересно, что более толстые слои ММО привели к ухудшению характеристик: высокая эффективность достигается за счет субнанометрового покрытия. При более детальном рассмотрении кобальт-алюминиевого слоя MMO было обнаружено обилие кислородных дефектов в слое; команда пришла к выводу, что тесная синергия между этим заполненным дефектами слоем и золотой поверхностью и привела к повышенной активности.
Новый катализатор показал выдающиеся результаты при очень низком содержании кобальта — менее 0,3% масс. Полученные результаты открывают путь для применения в широком спектре других материалов и создания целого семейства новых высокоэффективных катализаторов.