![]() |
При облучении хиральных золотых наночастиц фемтосекундными импульсами ближнего инфракрасного диапазона наблюдается видимое люминесцентное излучение. В данном исследовании выяснилось, что эта люминесценция обладает высокой селективностью для лево- или правостороннего циркулярно поляризованного света в зависимости от хиральности наночастиц, с фактором диссимметрии около 0,7. Этот вывод позволяет говорить о потенциальной возможности доведения различных приложений, использующих циркулярно поляризованный свет, до практического уровня. АннотацияИсследовательская группа под руководством доцента Хё Йонг Ан (Hyo-Yong AHN), доктора Кхай Куанг Ли (Khai Quang LE), доктора Тецуя Нарушима (Tetsuya NARUSHIMA), доцента Джунсуке Яманиши (Junsuke YAMANISHI) и профессора Хироми Окамото (Hiromi OKAMOTO) из Института молекулярных наук, а также доктора Рён Мён Кима (Ryeong Myeong KIM) и профессора Ки Тэ Нама (Ki Tae NAM) из Института молекулярных наук. Ки Тхэ НАМ из Сеульского национального университета обнаружили, что видимая люминесценция хиральных золотых наночастиц, вызванная облучением фемтосекундными импульсами ближнего инфракрасного диапазона, зависит от хиральности наночастиц и обеспечивает высокую селективность для лево- или правостороннего циркулярно поляризованного света. В то время как коэффициент диссимметрии для круговой поляризации люминесценции в большинстве хиральных материалов обычно составляет порядка 0,01 или ниже, излучение этих хиральных золотых наночастиц демонстрирует высокий коэффициент диссимметрии — около 0,7. Исследование опубликовано в журнале Advanced Optical Materials. СправкаХиральность — это свойство материалов, при котором их структура не накладывается на зеркальное отражение самой себя. Свет также имеет хиральную структуру в виде круговой поляризации, которая может быть левосторонней или правосторонней. Циркулярно поляризованный свет может найти применение в будущем в таких областях, как анализ следов хиральных веществ, защита от подделок, квантовая информация, экраны или дисплеи и т. д. Опубликован ряд научных работ, посвященных эффективным методам генерации циркулярно поляризованного света. Один из таких методов предполагает генерацию круговой поляризации за счет люминесценции материала, возбуждаемого светом, при этом длины волн возбуждающего и излучаемого света различны. Хотя во многих исследованиях были разработаны материалы, генерирующие круговую поляризацию с помощью этого метода, в большинстве случаев они обеспечивают лишь небольшие коэффициенты диссимметрии (описанные ниже). То есть они генерируют смешанный лево- и правосторонний циркулярно поляризованный свет с незначительной разницей в интенсивности. Коэффициент диссимметрии — это показатель того, насколько круговая поляризация смещена влево или вправо. Он определяется путем вычисления разницы между интенсивностью лево- и правосторонней циркулярной поляризации, деленной на их среднее значение. Чистая круговая поляризация имеет коэффициент диссимметрии (значение g) ±2, а линейный или неполяризованный свет имеет значение g, равное 0. Большинство традиционных светоизлучающих материалов с круговой поляризацией имеют коэффициент диссимметрии порядка 0,01 или меньше, и поэтому было трудно надежно идентифицировать генерируемый круговой поляризованный свет. РезультатИсследовательская группа сосредоточилась на видимой люминесценции, возникающей при облучении хиральных золотых наночастиц фемтосекундными импульсами ближнего инфракрасного диапазона. Хотя падающий свет был нехиральным и линейно поляризованным, было обнаружено, что излучаемый свет обладает высокой селективностью по отношению к лево- или правосторонней круговой поляризации. Коэффициент диссимметрии составил приблизительно 0,7, что указывает на значительно более высокую степень круговой поляризации по сравнению со многими другими циркулярно поляризованными светоизлучающими материалами, использованными в предыдущих исследованиях (коэффициенты диссимметрии обычно составляют порядка 0,01 или меньше). Кроме того, теоретические расчеты и анализ выявили механизм такой высокой селективности. ПерспективыДанное исследование демонстрирует, что наночастицы металлов с хиральной структурой являются полезными материалами для генерации циркулярно поляризованного света с лево- или правосторонней поляризацией. Понимание этого механизма также дает рекомендации по более эффективной генерации циркулярной поляризации. Эта работа открывает путь к разработке материалов и устройств, способных эффективно генерировать круговую поляризацию на различных длинах волн, и приложений для борьбы с подделками и квантовой информацией с использованием круговой поляризации света. 05.06.2024 |
Нано
![]() | |
Лазерная магия: ученые создают невидимые метки для защиты от подделок | |
Ученые придумали новый способ наносить на ... |
![]() | |
Теплицы без жары: как ученые охладили воздух и удвоили урожай | |
Ученые из Университета науки и техно... |
![]() | |
В ПГУ представили уникальный метод моделирования графеновых устройств | |
В Пензенском государственном университете груп... |
![]() | |
Красное свечение, которое не гаснет: прорыв в световых технологиях | |
Ученые создали новый материал, который может и... |
![]() | |
Питание через иглы: как ученые создают умные удобрения | |
Ученые из Томского политехнического униве... |
![]() | |
Холодный ритм: что происходит с наноматериалами при -160°C | |
Когда вода замерзает или кипит, она ... |
![]() | |
Маленькие частицы, большие возможности: нанотехнологии помогают бороться с раком | |
Ученые из Томского политехнического униве... |
![]() | |
Наночастицы в движении: ученые увидели невидимое | |
Группа ученых придумала новый способ, который ... |
![]() | |
Плазма, графен и газ: как ученые улучшили чувствительность датчиков | |
Технологии обнаружения газов сегодня важны как... |
![]() | |
Вода без яда: как томские ученые победили мышьяк | |
Ученые Томского политехнического университета ... |
![]() | |
Графен: как один материал меняет энергетику, моду и космос | |
Графен — это суперматериал, ко... |
![]() | |
Наносферы против парникового эффекта: как водород станет топливом будущего | |
Ученые создали пустотелые наносферы из кв... |
![]() | |
Платиновая корона и танец молекул: как газы меняют структуру материала | |
Исследователи из Токийского столичного ун... |
![]() | |
Электрические нановорота: как ученые научились управлять молекулами | |
Ученые из Университета Осаки создали крош... |
![]() | |
Казанские ученые научились «готовить» наноалмазы в плазме | |
Ученые придумали умную математическую модель, ... |
![]() | |
Созданы новые подложки для культивирования клеток на основе анодного глинозема | |
Наноструктурированные поверхности из глин... |
![]() | |
Nano Letters: Валлитроника открывает новые возможности обработки данных | |
Транспорт электронов в двухслойном графен... |
![]() | |
Новый материал для электроники будущего: фосфид ниобия может изменить технологии | |
По мере того как компьютерные чипы станов... |
![]() | |
ES&T: Наномембрана со смешанным зарядом — инновация в очистке сточных вод | |
Исследовательская группа под руководством... |
![]() | |
Nano Letters: Новая технология поможет лучше понять мир на молекулярном уровне | |
С 1950-х годов ученые используют радиоволны дл... |
![]() | |
NatPhot: Новый шаг к революции в обработке данных — люминесцентные нанокристаллы | |
Ученые, в том числе исследователь хи... |
![]() | |
Свет — повелитель молекул: ученые совершили прорыв в химии | |
Ученые из Болонского университета под&nbs... |
![]() | |
Наночастицы селена помогут укрепить иммунитет и защитить сердце | |
Ученые создали наночастицы селена, которые мож... |
![]() | |
Студенты из Самары создали новое антимикробное покрытие для ткани | |
Студенты из университета имени Королева в... |
![]() | |
Живые «таймеры»: как молекулярные механизмы помогают организмам измерять время | |
Живые организмы следят за временем и ... |
![]() | |
Наносистема доставки молекул предвещает безопасную эру в разработке лекарств | |
Инновационную систему доставки лекарств, облад... |
![]() | |
JPC: Нанопузырьки совершат прорыв в эффективности химических реакций | |
Газы необходимы для многих химических реа... |
![]() | |
Сенсоры нового поколения: как молодые ученые ТулГУ приближают будущее медицины | |
Новые материалы, которые могут помочь в с... |
![]() | |
Nano Letters: Ученые научились делать нанотрубки, направленные в одну сторону | |
Впервые создали нанотрубки из дисульфида ... |
![]() | |
В Красноярске открыт новый двумерный материал из семейства валлериита | |
Ученые из Красноярска создали новый матер... |